Engineering Intelligence

Candace Ross is a graduate student in the Center for Brains, Minds and Machines at the McGovern Institute. Photo: Kris Brewer
April 6, 2018

by Shannon Fischer

Go is an ancient board game that demands not only strategy and logic, but intuition, creativity, and subtlety—in other words, it’s a game of quintessentially human abilities. Or so it seemed, until Google’s DeepMind AI program, AlphaGo, roundly defeated the world’s top Go champion.

But ask it to read social cues or interpret what another person is thinking and it wouldn’t know where to start. It wouldn’t even understand that it didn’t know where to start. Outside of its game-playing milieu, AlphaGo is as smart as a rock.

“The problem of intelligence is the greatest problem in science,” says Tomaso Poggio, Eugene McDermott Professor of Brain and Cognitive Sciences at the McGovern Institute. One reason why? We still don’t really understand intelligence in ourselves.

Right now, most advanced AI development s are led by industry giants like Facebook, Google, Tesla and Apple, with an emphasis on engineering and computation, and very little work in humans. That has yielded enormous breakthroughs including Siri and Alexa, ever-better autonomous cars and AlphaGo.

But as Poggio points out, the algorithms behind most of these incredible technologies come right out of past neuroscience research–deep learning networks and reinforcement learning.

“So it’s a good bet,” Poggio says, “that one of the next breakthroughs will also come from neuroscience.” ...

Read the full story on the McGovern Institute website using the link below.