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Abstract

3D object reconstruction from a single image is a highly under-determined prob-
lem, requiring strong prior knowledge of plausible 3D shapes. This introduces
challenges for learning-based approaches, as 3D object annotations are scarce in
real images. Previous work chose to train on synthetic data with ground truth 3D
information, but suffered from domain adaptation when tested on real data.
In this work, we propose MarrNet, an end-to-end trainable model that sequentially
estimates 2.5D sketches and 3D object shape. Our disentangled, two-step formula-
tion has three advantages. First, compared to full 3D shape, 2.5D sketches are much
easier to be recovered from a 2D image; models that recover 2.5D sketches are also
more likely to transfer from synthetic to real data. Second, for 3D reconstruction
from 2.5D sketches, systems can learn purely from synthetic data. This is because
we can easily render realistic 2.5D sketches without modeling object appearance
variations in real images, including lighting, texture, etc. This further relieves the
domain adaptation problem. Third, we derive differentiable projective functions
from 3D shape to 2.5D sketches; the framework is therefore end-to-end trainable on
real images, requiring no human annotations. Our model achieves state-of-the-art
performance on 3D shape reconstruction.

1 Introduction

Humans quickly recognize 3D shapes from a single image. Figure 1a shows a number of images
of chairs; despite their drastic difference in object texture, material, environment lighting, and
background, humans easily recognize they have very similar 3D shapes. What is the most essential
information that makes this happen?

Researchers in human perception argued that our 3D perception could rely on recovering 2.5D
sketches [Marr, 1982], which include intrinsic images [Barrow and Tenenbaum, 1978, Tappen et al.,
2003] like depth and surface normal maps (Figure 1b). Intrinsic images disentangle object appearance
variations in texture, albedo, lighting, etc., with its shape, which retains all information from the
observed image for 3D reconstruction. Humans further combine 2.5D sketches and a shape prior
learned from past experience to reconstruct a full 3D shape (Figure 1c). In the field of computer
vision, there have also been abundant works exploiting the idea for reconstruction 3D shapes of
faces [Kemelmacher-Shlizerman and Basri, 2011], objects [Tappen et al., 2003], and scenes [Hoiem
et al., 2005, Saxena et al., 2009].

Recently, researchers attempted to tackle the problem of single-image 3D reconstruction with deep
learning. These approaches usually regress a 3D shape from a single RGB image directly [Tulsiani
et al., 2017, Choy et al., 2016, Wu et al., 2016b]. In contrast, we propose a two-step while end-to-end
trainable pipeline, sequentially recovering 2.5D sketches (depth and normal maps) and a 3D shape.

∗ indicates equal contributions.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Figure 1: Objects in real images (a) are subject to appearance variations regarding color, texture,
lighting, material, background, etc. Despite this, their 2.5D sketches like surface normal and depth
maps remain constant (b). The 2.5D sketches can be seen as an abstraction of the image, retaining all
information about the 3D shape of the object inside. We combine the sketches with learned shape
priors to reconstruct the full 3D shape (c).

We use an encoder-decoder structure for each component of the framework, and also enforce the
reprojection consistency between the estimated sketch and the 3D shape. We name it MarrNet, for its
close resemblance to David Marr’s theory of perception [Marr, 1982].

Our approach offers several unique advantages. First, the use of 2.5D sketches releases the burden on
domain transfer. As single-image 3D reconstruction is a highly under-constrained problem, strong
prior knowledge of object shapes is needed. This poses challenges to learning-based methods, as
accurate 3D object annotations in real images are rare. Most previous methods turned to training
purely on synthetic data [Tulsiani et al., 2017, Choy et al., 2016, Girdhar et al., 2016]. However, these
approaches often suffer from the domain adaption issue due to imperfect rendering. Learning 2.5D
sketches from images, in comparison, is much easier and more robust to transfer from synthetic to
real images, as shown in Section 4.

Further, as our second step recovers 3D shape from 2.5D sketches — an abstraction of the raw input
image, it can be trained purely relying on synthetic data. Though rendering diverse realistic images is
challenging, it is straightforward to obtain almost perfect object surface normals and depths from a
graphics engine. This further relieves the domain adaptation issue.

We also enforce differentiable constraints between 2.5D sketches and 3D shape, making our system
end-to-end trainable, even on real images without any annotations. Given a set of unlabeled images,
our algorithm, pre-trained on synthetic data, can infer the 2.5D sketches of objects in the image,
and use it to refine its estimation of objects’ 3D shape. This self-supervised feature enhances its
performance on images from different domains.

We evaluate our framework on both synthetic images of objects from ShapeNet [Chang et al., 2015],
and real images from the PASCAL 3D+ dataset [Xiang et al., 2014]. We demonstrate that our
framework performs well on 3D shape reconstruction, both qualitatively and quantitatively.

Our contributions are three-fold: inspired by visual cognition theory, we propose a two-step, dis-
entangled formulation for single-image 3D reconstruction via 2.5D sketches; we develop a novel,
end-to-end trainable model with a differentiable projection layer that ensures consistency between
3D shape and mid-level representations; we demonstrate its effectiveness on 2.5D sketch transfer and
3D shape reconstruction on both synthetic and real data.

2 Related Work

2.5D Sketch Recovery Estimating 2.5D sketches has been a long-standing problem in computer
vision. In the past, researchers have explored recovering 2.5D shape from shading, texture, or color
images [Horn and Brooks, 1989, Zhang et al., 1999, Tappen et al., 2003, Barron and Malik, 2015,
Weiss, 2001, Bell et al., 2014]. With the development of depth sensors [Izadi et al., 2011] and larger
scale RGB-D datasets [Silberman et al., 2012, Song et al., 2017, McCormac et al., 2017], there
have also been papers on estimating depth [Chen et al., 2016, Eigen and Fergus, 2015], surface
normals [Bansal and Russell, 2016, Wang et al., 2015], and other intrinsic images [Shi et al., 2017,
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Figure 2: Our model (MarrNet) has three major components: (a) 2.5D sketch estimation, (b) 3D
shape estimation, and (c) a loss function for reprojection consistency. MarrNet first recovers object
normal, depth, and silhouette images from an RGB image. It then regresses the 3D shape from the
2.5D sketches. In both steps, it uses an encoding-decoding network. It finally employs a reprojection
consistency loss to ensure the estimated 3D shape aligns with the 2.5D sketches. The entire framework
can be trained end-to-end.

Janner et al., 2017] with deep networks. Our method employs 2.5D estimation as a component, but
targets reconstructing full 3D shape of an object.

Single-Image 3D Reconstruction The problem of recovering object shape from a single image
is challenging, as it requires both powerful recognition systems and prior shape knowledge. With
the development of large-scale shape repository like ShapeNet [Chang et al., 2015], researchers
developed models encoding shape prior for this task [Girdhar et al., 2016, Choy et al., 2016, Tulsiani
et al., 2017, Wu et al., 2016b, Kar et al., 2015, Kanazawa et al., 2016, Soltani et al., 2017], with
extension to scenes [Song et al., 2017]. These methods typically regress a voxelized 3D shape
directly from an input image, and rely on synthetic data or 2D masks for training. In comparison, our
formulation tackles domain difference better, as it can be end-to-end fine-tuned on images without
any annotations.

2D-3D Consistency It is intuitive and practically helpful to constrain the reconstructed 3D shape
to be consistent with 2D observations. Researchers have explored this idea for decades [Lowe, 1987].
This idea is also widely used in 3D shape completion from depths or silhouettes [Firman et al.,
2016, Rock et al., 2015, Dai et al., 2017]. Recently, a few papers discussed enforcing differentiable
2D-3D constraints between shape and silhouettes, enabling joint training of deep networks for 3D
reconstruction [Wu et al., 2016a, Yan et al., 2016, Rezende et al., 2016, Tulsiani et al., 2017]. In our
paper, we exploit this idea to develop differentiable constraints on the consistency between various
2.5D sketches and 3D shape.

3 Approach

To recover the 3D structure from a single view RGB image, our MarrNet contains three parts: first, a
2.5D sketch estimator, which predicts the depth, surface normal, and silhouette images of the object
(Figure 2a); second, a 3D shape estimator, which infers 3D object shape using a voxel representation
(Figure 2b); third, a reprojection consistency function, enforcing the alignment between the estimated
3D structure and inferred 2.5D sketches (Figure 2c).

3.1 2.5D Sketch Estimation

The first component of our network (Figure 2a) takes a 2D RGB image as input, and predicts its 2.5D
sketch: surface normal, depth, and silhouette. The goal of the 2.5D sketch estimation step is to distill
intrinsic object properties from input images, while discarding properties that are non-essential for
the task of 3D reconstruction, such as object texture and lighting.

We use an encoder-decoder network architecture for 2.5D sketch estimation. Our encoder is a
ResNet-18 [He et al., 2015], encoding a 256×256 RGB image into 512 feature maps of size 8×8.
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Figure 3: Reprojection consistency between 2.5D sketches and 3D shape. Left and middle: the
criteria for depths and silhouettes; right: the criterion for surface normals. See Section 3.3 for details.

The decoder contains four sets of 5×5 fully convolutional and ReLU layers, followed by four sets
of 1×1 convolutional and ReLU layers. It outputs the corresponding depth, surface normal, and
silhouette images, also at the resolution of 256×256.

3.2 3D Shape Estimation

The second part of our framework (Figure 2b) infers 3D object shape from estimated 2.5D sketches.
Here, the network focuses on learning the shape prior that explains input well. As it takes only surface
normal and depth images as input, it can be trained on synthetic data, without suffering from the
domain adaption problem: it is straightforward to render nearly perfect 2.5D sketches, but much
harder to render realistic images.

The network architecture is inspired by the TL network [Girdhar et al., 2016], and the 3D-VAE-
GAN [Wu et al., 2016b], again with an encoding-decoding style. It takes a normal image and a depth
image as input (both masked by the estimated silhouette), maps them to a 200-dim vector via five sets
of convolutional, ReLU, and pooling layers, followed by two fully connected layers. The detailed
encoder structure can be found in Girdhar et al. [2016]. The vector then goes through a decoder,
which consists of five fully convolutional and ReLU layers to output a 128×128×128 voxel-based
reconstruction of the input. The detailed encoder structure can be found in Wu et al. [2016b].

3.3 Reprojection Consistency

There have been works attempting to enforce the consistency between estimated 3D shape and 2D
representations in a neural network [Yan et al., 2016, Rezende et al., 2016, Wu et al., 2016a, Tulsiani
et al., 2017]. Here, we explore novel ways to include a reprojection consistency loss between the
predicted 3D shape and the estimated 2.5D sketch, consisting of a depth reprojection loss and a
surface normal reprojection loss.

We use vx,y,z to represent the value at position (x, y, z) in a 3D voxel grid, assuming that vx,y,z ∈
[0, 1], ∀x, y, z. We use dx,y to denote the estimated depth at position (x, y), and nx,y = (na, nb, nc)
to denote the estimated surface normal. We assume orthographic projection in this work.

Depths The projected depth loss tries to guarantee that the voxel with depth vx,y,dx,y
should be 1,

and all voxels in front of it should be 0. This ensures the estimated 3D shape matches the estimated
depth values.

As illustrated in Figure 3a, we define projected depth loss as follows:

Ldepth(x, y, z) =


v2x,y,z, z < dx,y
(1− vx,y,z)

2, z = dx,y
0, z > dx,y

. (1)

The gradients are

∂Ldepth(x, y, z)

∂vx,y,z
=


2vx,y,z, z < dx,y
2(vx,y,z − 1), z = dx,y
0, z > dx,y

. (2)
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When dx,y =∞, our depth criterion reduces to a special case — the silhouette criterion. As shown
in Figure 3b, for a line that has no intersection with the shape, all voxels in it should be 0.

Surface Normals As vectors nx = (0,−nc, nb) and ny = (−nc, 0, na) are orthogonal to the nor-
mal vector nx,y = (na, nb, nc), we can normalize them to obtain two vectors, n′x = (0,−1, nb/nc)
and n′y = (−1, 0, na/nc), both on the estimated surface plane at (x, y, z). The projected surface
normal loss tries to guarantee that the voxels at (x, y, z) ± n′x and (x, y, z) ± n+y should be 1 to
match the estimated surface normals. These constraints only apply when the target voxels are inside
the estimated silhouette.

As shown in Figure 3c, let z = dx,y , the projected surface normal loss is defined as

Lnormal(x, y, z) =
(
1− vx,y−1,z+nb

nc

)2
+
(
1− vx,y+1,z−nb

nc

)2
+(

1− vx−1,y,z+na
nc

)2
+
(
1− vx+1,y,z−na

nc

)2
. (3)

Then the gradients along the x direction are

∂Lnormal(x, y, z)

∂vx−1,y,z+na
nc

= 2
(
vx−1,y,z+na

nc
− 1
)

and
∂Lnormal(x, y, z)

∂vx+1,y,z−na
nc

= 2
(
vx+1,y,z−na

nc
− 1
)
.

(4)
The gradients along the y direction are similar.

3.4 Training Paradigm

We employ a two-step training paradigm. We first train the 2.5D sketch estimation and the 3D shape
estimation components separately on synthetic images; we then fine-tune the network on real images.

For pre-training, we use synthetic images of ShapeNet objects. The 2.5D sketch estimator is trained
using the ground truth surface normal, depth, and silhouette images with a L2 loss. The 3D interpreter
is trained using ground truth voxels and a cross-entropy loss. Please see Section 4.1 for details on
data preparation.

The reprojection consistency loss is used to fine-tune the 3D estimation component of our model on
real images, using the predicted normal, depth, and silhouette. We observe that a straightforward
implementation leads to shapes that explain 2.5D sketches well, but with unrealistic appearance. This
is because the 3D estimation module overfits the images without preserving the learned 3D shape
prior. See Figure 5 for examples, and Section 4.2 for more details.

We therefore choose to fix the decoder of the 3D estimator and only fine-tune the encoder. During
testing, our method can be self-supervised, i.e., we can fine-tune even on a single image without any
annotations. In practice, we fine-tune our model separately on each image for 40 iterations. For each
test image, fine-tuning takes up to 10 seconds on a modern GPU; without fine-tuning, testing time
is around 100 milliseconds. We use SGD for optimization with a batch size of 4, a learning rate of
0.001, and a momentum of 0.9. We implemented our framework in Torch7 [Collobert et al., 2011].

4 Evaluation

In this section, we present both qualitative and quantitative results on single-image 3D reconstruction
using variants of our framework. We evaluate our entire framework on both synthetic and real-life
images on three datasets.

4.1 3D Reconstruction on ShapeNet

Data We start with experiments on synthesized images of ShapeNet chairs [Chang et al., 2015]. We
put objects in front of random backgrounds from the SUN database [Xiao et al., 2010], and render the
corresponding RGB, depth, surface normal, and silhouette images. We use a physics-based renderer,
Mitsuba [Jakob, 2010], to obtain more realistic images. For each of the 6,778 ShapeNet chairs, we
render 20 images of random viewpoints.
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Figure 4: Results on rendered images of ShapeNet objects [Chang et al., 2015]. From left to right:
input, estimated normal map, estimated depth map, our prediction, a baseline algorithm that predicts
3D shape directly from RGB input without modeling 2.5D sketch, and ground truth. Both normal and
depth maps are masked by predicted silhouettes. Our method is able to recover shapes with smoother
surfaces and finer details.

Methods We follow the training paradigm described in Section 3.4, but without the final fine-tuning
stage, as ground truth 3D shapes are available on this synthetic dataset. Specifically, the 2.5D sketch
estimator is trained using ground truth depth, normal and silhouette images and a L2 reconstruction
loss. The 3D shape estimation module takes in the masked ground truth depth and normal images as
input, and predicts 3D voxels of size 128×128×128 with a binary cross entropy loss.

We compare MarrNet with a baseline that predicts 3D shape directly from an RGB image, without
modeling 2.5D sketches. The baseline employs the same architecture as our 3D shape estimator
(Section 3.2). We show qualitative results in Figure 4. Our estimated surface normal and depth images
abstract out non-essential information like textures and lighting in the RGB image, while preserving
intrinsic information about object shape. Compared with the direct prediction baseline, our model
outputs objects with more details and smoother surfaces. For quantitative evaluation, previous works
usually compute the Intersection-over-Union (IoU) [Tulsiani et al., 2017, Choy et al., 2016]. Our full
model achieves a higher IoU (0.57) than the direct prediction baseline (0.52).

4.2 3D Reconstruction on Pascal 3D+

Data PASCAL 3D+ dataset [Xiang et al., 2014] provides (rough) 3D models for objects in real-life
images. Here, we use the same test set of PASCAL 3D+ with earlier works [Tulsiani et al., 2017].

Methods We follow the paradigm described in Section 3.4: we first train each module separately
on the ShapeNet dataset, and then fine-tune them on the PASCAL 3D+ dataset. Unlike previous
works [Tulsiani et al., 2017], our model requires no silhouettes as input during fine-tuning; it instead
estimates silhouette jointly.

As an ablation study, we compare three variants of our model: first, the model trained using ShapeNet
data only, without fine-tuning; second, the fine-tuned model whose decoder is not fixed during
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