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Abstract

Velocity model building (VMB) is a key step in hydrocarbomxploration; The VMB
main product is an initial model of the subsurface that is subsequently used in
seismic imaging and interpretation workflows. Reflection or refraction Tomography
and full waveform inversion (FWI) are the most commonly used techniques in VMB.
On ore hand, Tomography is d&ime-consuming activity that relies on successive
updates of highly humancurated analysis of gathersOn the other hand, FWI is very
computationally demanding with no guarantees of global convergence.

We propose and implement anovel concept that bypasses these demanding steps,
directly producing an accurate gridding or layered velocity model from shot gathers.
Our approach relies on training deep neuralnetworks; the resulting predictive
model maps relationships between the datapace and the final output (particularly,
the presence of high velocity segments that might indicate salt formations). In term
of time, the training task takesa few hours for 2D data, but the inference step
(predicting a model from previously unseen datatakes only seconds.

The promising results shown here for synthetic 2D data demonstrate a new way of
using seismic data and suggests fast turnaround of workflows that now make ueé
machine learning approaches to identify key structures in the substace.

Introduction

Exploration workflows are under great pressure, from improving performance at
lower costs to the ongoing avalanche of data coming from new generations of
sensors and modern acquisition systems. Some of the key steps in these workflows
depend an domain experts, their time is precious and limited, but the amount of
data that needs to be thoroughly analyzed is increasingn addition, the complexity

of some of the exploration areas require extra attention. The problem can be
summarized asan explosion ofdata, whichare increasingly more complex than even
before.

Geoscientists need to be empowered with new tools, tools that digest, as much of
the data is possible before the human expert intervenes. The High Performance
Computing (HPC) rewlution of the ten years (BizTech, 2014 shares the same
purpose but essentidly targets processing speed rathetthan any other specific step

of the exploration workflow.
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This time around advanced dateoriented algorithms look to improve every step of
the workflow through a deeper understanding of the data, from extracting the
relevant information to a better awareness of the rest of the steps in a more
integrated fashion rather silos of knowledge.

What we propose in this work goeseyond what is becomingthe new norm, which

is Machine Learning (ML) techniques beingapplied to specific weltknown steps of
the workflow. This same magazine carried a special editioan how Analytics and
ML (March 2017) techniques are paving inroads in different aspect of the
exploration workflow, but still most work is focused on identifying features or
attributes in migrated images (Hale, 2012; Hale, 2013; Guillen, 2015; Addison, 2016;
Bougher et al, 2016), therefore helping to tackle the interpretabn step, very few
has bee proposedon helping directly processing or VMB. In general, the literature
is abundant with refinements to this workflow, but still it remains largely
untouched.

Our method produces velocity models directly from raw seismic data in a way that
is alternative to classic Tomography, also it is automatic and without human
intervention. The ML technique employed follows recent work (Frogner et al, 2015;
Zhang et al, 2014; Dahlket al, 2016, ArayaPoloet al, 2017) that demonstrates this
new approach, which uses a Deep Neural Network (DNN) statistical model to
transform raw input seismic data directly to the final mapping in 2D or 3D. The
computational costscome mostly from training andthis happens only once up front.
After training, velocity model reconstructon costsare negligible, thus making the
overall computing costsa fraction of the time needed for traditional techniques, in
particular the ones involving partial differential equations-based simulation One
key element of our method is the use of a feature based on semblance, therefore this
feature pre-digest velocity information for the training process, still this feature
extraction step is automated and not subjected thuman bias.

In terms of deployment modes, w foresee models being trained with specific data
belonging to different major formations, such as unconventional, prealt or subsalt.
The main concernsrelate to the generdization error, which basically set he limits
on how much a predicting model can accuately predict for unseen data.Finally,
regarding exploration workflows, one can imagine this technique being used just
after data acquisition, then trained modelsare loaded up tothe cloud from which
interpreter s can pull realizations thus performing online scenarios testing when
feeding back their model modifications to applications such as the one proposed in
Araya-Poloet al, 2017. This imagined workflow is fully Mbased, flexible and with
the domain experts at the center of the critical decision making processif itis
accompaniedby the proper resourcing this workflow approaches significantlyto a
real-time ubiquitous experience

The layout of the paper is as follows; we start by explaining the basts of the
problem followed by discussions on Deep LearningNext, we introduce the general
workflow used by our ML system, that we termed GeoDNN. After that, we disas



our results and experiments with 2D synthetic data.Finally, conclusions are
presentedwhich include the directions for future work.

Problem formulation
Formally, thetraditional tomography problem can be expresses the minimization
of the following objective function:
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where & is the optimal velocity model that minimizesd & ,’Q is a data vector that
is modeled from a nonlinear modeling operator'Qd , andQ is the recorded data
vector. While it is common to minimize the sum of the squares (represented here by
the sguare of the L2 norm), other objective functions may be used. Note that in the
case of traveltime tomography the data vectors contain travetimes that are
modeled via the solution of the Eikonal equation. Alternatively, in the FWI case, the
data containthe seismic traces that are modeled via the numerical solution of the
wave-equation.

As is apparent by the norinear relationship betweenQ and & this inversion is
nonlinear. Additionally, since for reflection seismic surveysQ contains surfae
seismic data, it does not contain all of the necessary information to define a velocity
model that varies arbitrarily with depth and along the horizontal directions (Biondi,
2001). This means that, in general, minimizing the above equation is an-flbsed
problem. While in using a deep learning approach to tomography we do not rely on
numerical solutions of the Eikonal or waveequations, we still need to considethe
nonlinearity and ill-posed natureof this inverse problem.

The application of neural networks for velocity estimation and for geophysical
applications in general is not new (van der Baan2000). The first use of neural
networks for velocity estimation was proposedby Roth and Tarantola (1994) where
neural networks are usedto estimate 1D velocity functions from shot gathers. Nath
et. al., 1999 used neural networks fortravel-time crosswell tomography. After
training their network using travel-time maps and synthetic velocitymodels as
training data, the network was then used to tmographically estimate velocities for
crosswell data acquired in West Bengal, India. Although the problem we attempt to
solve is similar, aur work is novel in that it makes use othe recent development of
more advanced deep neural network (DNN) architdares and moreover, we usell
of the data (not only selectedravel-times) in order to train our DNN and perform
tomography.

Machine Learning of Tomography Operators via Deep Neural Networks

Using machine learning algorithms is an appealing alternatev to classic seismic
processing, and &ong this class of algorithms we have implemented the
tomography operator using a Deep Neural Network (DNN). The tomography
operator is learned from seismic training data, using statistical learnin¢Hastie et al,
2001) principles. The tomography process is depicted in Figure 1, and it performs



reconstruction of the velocity model from raw seismic traces, or from features
computed from raw seismic traces (as part of the tomography operator). In a real
life application, the ground-truth model is unavailable, and the tomography
operator is designed to minimize the difference between the reconstructed velocity
model and the (unavailable) groundtruth one.
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Figure 1: Tomography reconstruction of velocity models from seismidata.

In the statistical learning framework, the tomography operator is learned using a
collection of 0 training examples @, whered denotes the seismic traces (or
features of seismic traces) generated from théth velocity modelw. Specifically,
the tomography operator is learned by solving the following optimization problem:

IOO oo

&= argmln—a L% 5 I)(a

where "Y®h is the tomography operator, parameterized by the coefficients vector
| , and its output is the reconstructed velocity modety. The loss functiord whw
measures the difference between the ground truth velocity modeb and its
reconstructed version w. The loss function we employed is the squared

error4d who @  , which is frequently used in regression prol®ms, and

leads to the following optimization problem:
N
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A frequently used minimization approach is the Gradient Descent (GDwhich
iteratively updates the coefficients vector as follows:

1o

where * is a positive learning ratey is the empirical loss:

4Note that in the case ofwo images, the squared error loss is computed pixddased,
namely, it is the sum of all squared pixels differences.
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and thegradient of O , with respect to| ,is given by:
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The tomography operator'Y®R was implemented using a Deep Neural Network
(DNN), as detailed in the following.

Deep Neural Networks

DNNs are powerfulmachine learning algorithms (eCun et al 2015, Goodfellow et
al, 2016), which provide state-of-the-art results in numerous computer vision,
speech processingand artificial intelligence problems. In particular DNNs provide
excellent results for imaging inverseproblems such as denoising (Burger et al
2012, Xie et al, 2012), superresolution (Dong et al, 2016), compressedsensing
(Adler et al, 2017), andX-ray computed tomography (Wang 2016, Wurfl et al,
2016). In addition, accordingto the Universal ApproximationTheorem (Hornik et al,
1989), DNNs can be used to approximate any arbitrary continuous function up &
specified accuracy. For thesereasors, there isgreat promise in using this approach
to approximate complexfunctions that are highly non-linear.
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to the network is connected to the input layer, which is followed by a varying

number of hidden layers, and eventually the output of the network is computed at
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previous layer. These networks are trained with examplesper the statistical

learning approach where the correct output (label) is known for a given input, and

the weight parameters inthe nodes of the network evolves due to the minimization

of the error between the prediction and true value. This causes the network to

increasingly become a better predictor of the training examples, and ultimately of

any example (assuming proper training of a class of data that is similar in nature to

the training data.
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Figure 2: Topology of a Deep Neural Network with three hidden layers.

The proposed tomography operator is therefore described as follows, assuming for
example three hidden layers:
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where "Q is the output layer function, parameterized by and the hidden layer
functions are"NQfiQGeach parameterized by h h , respectively(the vector| is
composed by h h

Our ability to design effective neural networks is limited by computing resources
constraints. More complex networks are morecomputational demandingto train,
and the generation of accurate training examples can be computationally expensive
due to largescale forward modeling. Ultimately, our predictions are only as good as
the complexity and refinement of our neural network coupled with the relevance
and quality of the features that we choose as inputs.

Workflow

Since we lacked abundant ladded data,this implies that the neural network's best
result would be bound by the limited number of examples, which often leads to
over-fitting of the learning procedure to the training data.and control of the main
parameters involved (data generation)is key when proving a new concept, in this
work we focus on results for 2D synthetic onlyWe introduce two workflows, one
for training and one for inference (aka testinglas explainedbelow.

In the training workflow (Fig 3), the first step is the pseuderandom generation of
thousands of unbiased velocity models and from them thiabels that represent the
experiment, for instance models with faults or salt bodies. In the second step, a
modeling step produces the seismic datdor the sake of simplicity and brevity only
acoustic approximation of the wave equation is used. The third step extracts



features from the seismic data. The purpose of this step is twofold, on one hand, to
reduce the amount of data used for training, whichherefore alleviate the stress on
the computing resources, on the other hand, it helps the training to focus on certain
aspects within the data that are relevant for the experiment, this also helps with the
accuracy and convergence of the training task.nOe we have extracted the features,
the actual deep learning process starts. Our workflow is fully parametrical, from the
velocity generation to the feature extraction; therefore, the richness of the
experiments is comprehensive in terms of variety of veldty models, acquisition
geometries, etc.
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Figure 3. Training workflow.
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Figure 4. Inference (testing) workflow.

The inference workflow (Figure 4), is the workflow where new models are
predicted when exposed to unseen or new data. In our particulazontext of using
synthetic data, it starts in the same fashion as the training workflow, models and
data is generated, then that datathat has not been used for trainingis presented to
the predicting model that reconstruct a velocity model. Since we gerate the
testing data following the mentioned steps, calculations of accuracy of the model are
straightforward.

Semblance asa feature for Machine Learning

Feature extraction is a key step in our workflow as it can greatly improve the
training of the DNN by providing it with the most relevant data for learning Our
Machine Learning platform GeoDNN is capable of handling diverse network
architectures and data, but en that we desire to learn a velocity tomography
operator from the data, we performvelocity analysis and provide semblance panels
for different common midpoint (CMP) locations as the input featurelo calculate the
semblance panel for a given midpoint, we first apply a normal moveout (NMO)



correction to a common midpoint gather using thesecondorder travel time
equation:
0 0o —
W

where 0 is the calculated NMO travetime, 0 is the zero-offset travel time, wis
the offset andw is the NMO velocity. By choosing a triab we can then
perform an NMO correction on the gather resulting in an NM©@orrected image
i "@Q where ‘Gand k are the corrected NMO time and offset sample indices
respectively (following the notation of Luo and Hale 2012). Semblance is then
calculated by stacking along the offset index and smoothing along the time indext

i "@Q. This can be expressed mathematically as:
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wherei "Qis the output semblance at the output timesample@) is the total
number of offset samples and) is a parameter that defines the length of the time
smoothing window of lengthcd p centered at"Q Additionally, we calculate
weighting functions that are applied to semblance panels thatnephasize terms in
the semblance calculation that are most sensitive to changes in velocitiyjuo and
Hale 2012). While in the semblance calculation we assume famow only second
order moveourt (i.e., the traditional NMO equation), we have the capability afsing
higher-order terms in the travel-time equation allowing for greater acairacy at far
offsets (Yilmaz,2001).

Given that we provide semblance panels for multiple CMP locations, this input
feature ends up having three dimasions, making a cube. Figures 5 &ghow us two
things about this feature space. First, for the particular model that the semblance
cube represents, we have a high percentage of zeeotry and low value parameters.
This is true for many models that we perform semblance cubes on, which means
there is an opportunity to sparsify the parameter space. Second, the events in the
semblance cube space have patterns that relate to the reflector position and
velocity. Humans can interpret some of these patterns (such as distinct energy
spikes / clusters which correspond to sharp unpolluted reflection events). Other
patterns that are mixed or smeared across the semblance space can imply non
unigueness which is much more difficult to derive a model approximation from. The
advantage of using machine learmg is that we are able to leverage the ability of the
DNN to learn from a multitude of examples to discover complex patterns that would
otherwise be very expensive and difficult to learn and utilize. Using thegeatterns,
we can learn a mapping from the sablance space to the velocity model space.
Alternative methods like inversion can be very expensive because the mapping
between these spaces uses wave propagation (or some other approximation) as the
forward operator. Other methods would try to linearize he forward operator, or
follow some more simplistic methodology like picking velocities from peak



amplitudes in the semblance cube. All of these methods need to be repeated for each
model of interest. Using a DNN methodology, we need to only train onceteafwhich
subsequent model approximations can be found from their corresponding
semblance plots at negligible cost.

As stated, thenature of using semblanceas a feature input is that there are patterns
that have meaning in relation to the velocity modelsome of which are trivial to
explain while others are more complex.DNN architectures fundamentally learn
patterns in the feature space using stencils whose dimensions are predetermined.
We believe thatthe geophysics based transformation that the sembla® cube
represents make it a good choice as an input feature for deep learning for
tomographic velocity estimation, especially for INN architectures that can leverage
the patterns that are found in that space.

Time (s)

3000 4000 S000 6000
Velocity (m/s)

Figure 5. A calculated semblance cube useads an input feature for deep learning.
The front face of the cube (with axes of zeroffset time and velocity) shows the
semblance panel for a particular CMP location used in traditional velocity analysis.
The side face of the cube (with axes of CMP locatiand zercoffset time) shows the
calculated semblance for a particular velocity for all CMP locations and time. Note
the spatially coherent structure of the semblance in the cube.
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Figure 6. An example of a calculated semblance cube for a seNlayer model. Note
that the traditional velocity analysis panel of the semblance cube shown in (b)
captures each of the layer interfacesAlso, note that the right panel (axes of CMP
location and zercoffset time) of the semblance cube qualitatively gives the
approximate structure of the velocity model shown in (a)

Implementation and R esults

We generated thosands of random twedimensional velocity models with up to
four faults in them, of varying strike, dip angle, and position. Our models had
between three and eight layers each, with velocities varying from 2000 to 4000
[m/s], with layer velocity increasing with depth. These models were 140x180 grid
points at the sampling usedfor wave equation solving.The raw data collected was
reduced to a semblancefeature set that can fit in multiple NVIDIA K80 GPGPU
memory.

We trained the proposed DNN using a training set composedof tens of thousands of
velocity models, and tested the tomography results with a testing set of thousands
of velocity models.

Experimentstype I:

The output of the DNN is continuous valued image, whereas the groutwith
velocity model images are comprised from a discrete number of values, each
correspond to a unique velocity value. Therefore, we have applied a pgstocessing



image segmentation (Seliski, 2010) stage to each reconstructed velocity model
using two methods: (1) kMeans segmentation which uses the grounttuth number

of layers in order to cluster all pixels into to correct number of segments. (2)-K
Means segmentation with 8 segments dlyers) for all velocity models (in a real
application, the number of segments can be controlled). The visual quality of each
segmented image was compared against the ground truth velocity model (i.e. test
example label), using the Structural Similarity Imge Metric (SSIM), developed by
Wang et. al. (Wang, 2004). The SSIM metric is computed using three image features
that mostly influence the human visual system: structure, contrast and luminance.
Given two images, the SSIM formula computes a continuous nuentbetween 0.0 to
1.0, where 1.0 corresponds to identical images, and 0.0 corresponds to complete
visually dissimilar images. The SSIM metric is considered more coherent to human
judgment, than the Mean Squared Error (MSE) metric, for image comparisons.€Th
averaged SSIM over thousands of test velocity models is 0.8717 foiM€ans with
the correct number of segments, and 0.8603 for Kleans with 8 segments for all
images, which clearly indicate very high similarity to the ground truth velocity
models. In Fgures 7, we provide examples of the reconstructed velocity models
with varying numbers of layers, which demonstrate the high visual quality of the
reconstructed images. We have observed that the reconstruction network tends to
smooth faults (third row of Figure 7), and further improvements for accurate faults
reconstruction are left for future research
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Figure 7. Tomography with 4-7 velocities: (column a) Ground truth (column b) DNN
output image (column c) Segmented image using #leansand the correct number
of layers, and (column d) Segmented image usiné-Means and 8 layers

Experimentstype II:

In this set of the experiments the labels and reconstructed models areontinues
value (not a binary or multiclass classification process)that represents velocity.
Some ofthe labels and modelsinclude salt bodies along with 3 to 7 layers. The
evaluation metrics are Rscore (coefficient of determination) and SSIM as described
above.R? score measures the total variation of the outcomes provietl by the model,

it is interpreted as the goodness of the model fitting, the values can be negative and
the optimal value is 1.
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Figure 8. In the top row left column a layered model is presented as ground truth
(label), the right column shows the prediction generated with the trained model.
That model was training with data that only contains layered models with different
number of layers ard velocity per layer. The predicted model closely resembles the



label in structure and actual velocity. The mid and bottom row are results for a
different trained model, this one has been trained with a dataset that also contains
salt bodies, which has bee handcrafted.

Figure 9. Validation loss function value (red curve related to left Y axis) informs
about the effectiveness of the training process. Green and blue curves (related to the
right Y axis) represent the evolution of the accuracy metrics durip training with
salt bodies The horizontal axisrepresents training epochs.

In terms of prediction accuracy, for experiments that only contain layersKigure 8
top), the RZscore is0.8124 and SSIM i90.8939, which is comparable to the results
obtained for the set of experimentsof type I. For the experiments with and without
salt bodies (Figure 8 mid and bottom)the R score is0.5536 and the SSIM i©.8101.
As expected, the task of predicting a model with salt bodies is more difficult and
therefore the performance is lower than the task of predicting plain velocity modsl
Also, the variability of the salt bodies shpe and location is more difficult to learn
with the size of training dataset, thatused, this explains why theR2 score is more
affected (Figure 9) than the SSIM for this casdn any case, he overall performance
trend is positive, the salt bodies are located properly and the surrounding structure
resembles the labels in direction and velocity value

Conclusions

The concept introduced here has enormous potential, just from the computing
perspective the results were computed in a single computing node, not in a cluster,
further the input to the ML system hasonly one type of feature and the number of
training samples is tens ofthousands, which barely falls in the big data categoryll
these elements when scaled upcan contribute to improve the accuracy and
generalization of the predicting models.



