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Abstract  
Velocity model building (VMB) is a key step in hydrocarbon exploration; The VMB 
main product is an initial model of the subsurface that is subsequently used in 
seismic imaging and interpretation workflows. Reflection or refraction Tomography 
and full waveform inversion (FWI) are the most commonly used techniques in VMB. 
On one hand, Tomography is a time-consuming activity that relies on successive 
updates of highly human-curated analysis of gathers. On the other hand, FWI is very 
computationally demanding with no guarantees of global convergence.  
 
We propose and implement a novel concept that bypasses these demanding steps, 
directly producing an accurate gridding or layered velocity model from shot gathers. 
Our approach relies on training deep neural networks; the resulting predictive 
model maps relationships between the data space and the final output (particularly, 
the presence of high velocity segments that might indicate salt formations). In term 
of time, the training task takes a few hours for 2D data, but the inference step 
(predicting a model from previously unseen data) takes only seconds.   
 
 The promising results shown here for synthetic 2D data demonstrate a new way of 
using seismic data and suggests fast turnaround of workflows that now make use of 
machine learning approaches to identify key structures in the subsurface. 
 
Introduction  
Exploration workflows are under great pressure, from improving performance at 
lower costs to the ongoing avalanche of data coming from new generations of 
sensors and modern acquisition systems.  Some of the key steps in these workflows 
depend on domain experts, their time is precious and limited, but the amount of 
data that needs to be thoroughly analyzed is increasing. In addition, the complexity 
of some of the exploration areas requires extra attention. The problem can be 
summarized as an explosion of data, which are increasingly more complex than even 
before.  
Geoscientists need to be empowered with new tools, tools that digest, as much of 
the data is possible before the human expert intervenes. The High Performance 
Computing (HPC) revolution of the ten years (BizTech, 2014) shares the same 
purpose but essentially targets processing speed rather than any other specific step 
of the exploration workflow. 
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This time around advanced data-oriented algorithms look to improve every step of 
the workflow through a deeper understanding of the data, from extracting the 
relevant information to a better awareness of the rest of the steps in a more 
integrated fashion rather silos of knowledge. 
 
What we propose in this work goes beyond what is becoming the new norm, which 
is Machine Learning (ML) techniques being applied to specific well-known steps of 
the workflow. This same magazine carried a special edition on how Analytics and 
ML (March 2017) techniques are paving inroads in different aspects of the 
exploration workflow, but still most work is focused on identifying features or 
attributes in migrated images (Hale, 2012; Hale, 2013; Guillen, 2015; Addison, 2016; 
Bougher et al, 2016), therefore helping to tackle the interpretation step, very few 
has been proposed on helping directly processing or VMB. In general, the literature 
is abundant with refinements to this workflow, but still it rema ins largely  
untouched.  
 
Our method produces velocity models directly from raw seismic data in a way that 
is alternative to classic Tomography, also it is automatic and without human 
intervention . The ML technique employed follows recent work (Frogner et al, 2015; 
Zhang et al, 2014; Dahlke et al, 2016, Araya-Polo et al, 2017) that demonstrates this 
new approach, which uses a Deep Neural Network (DNN) statistical model to 
transform raw input seismic data directly to the final mapping in 2D or 3D. The 
computational costs come mostly from train ing and this happens only once up front. 
After training, velocity model reconstruction costs are negligible, thus making the 
overall computing costs a fraction of the time needed for traditional techniques, in 
particular the ones involving partial differential equations-based simulation. One 
key element of our method is the use of a feature based on semblance, therefore this 
feature pre-digest velocity information for the training process, still this feature 
extraction step is automated and not subjected to human bias. 
 
In terms of deployment modes, we foresee models being trained with specific data 
belonging to different major formations, such as unconventional, pre-salt or subsalt. 
The main concerns relate to the generalization error , which basically set the limits 
on how much a predicting model can accurately predict for unseen data. Finally, 
regarding exploration workflows, one can imagine this technique being used just 
after data acquisition, then trained models are loaded up to the cloud from which 
interpreter s can pull realizations, thus performing online scenarios testing when 
feeding back their model modifications to applications such as the one proposed in 
Araya-Poloet al, 2017. This imagined workflow is fully ML-based, flexible and with 
the domain experts at the center of the critical decision making process; if it is 
accompanied by the proper resourcing this workflow approaches significantly to a 
real-time ubiquitous experience.  
 
The layout of the paper is as follows; we start by explaining the basics of the 
problem followed by discussions on Deep Learning. Next, we introduce the general 
workflow used by our ML system, that we termed GeoDNN. After that, we discuss 



our results and experiments with 2D synthetic data. Finally, conclusions are 
presented which include the directions for future work. 
 
Problem formulation  
Formally, the traditional tomography problem can be expressed as the minimization 
of the following objective function: 
 

ὐά ȿȿὨ ά Ὠ ȿȿȟ 
 
where ά is the optimal velocity model that minimizes ὐά , Ὠ  is a data vector that 
is modeled from a non-linear modeling operator Ὢά , and Ὠ  is the recorded data 
vector. While it is common to minimize the sum of the squares (represented here by 
the square of the L2 norm), other objective functions may be used. Note that in the 
case of travel-time tomography the data vectors contain travel-times that are 
modeled via the solution of the Eikonal equation. Alternatively, in the FWI case, the 
data contain the seismic traces that are modeled via the numerical solution of the 
wave-equation.  
 
As is apparent by the non-linear relationship between Ὠ and ά this inversion is 
nonlinear. Additionally, since for reflection seismic surveys Ὠ  contains surface 
seismic data, it does not contain all of the necessary information to define a velocity 
model that varies arbitrarily with depth and along the horizontal directions (Biondi, 
2001). This means that, in general, minimizing the above equation is an ill-posed 
problem. While in using a deep learning approach to tomography we do not rely on 
numerical solutions of the Eikonal or wave-equations, we still need to consider the 
nonlinearity and ill -posed nature of this inverse problem. 
 
The application of neural networks for velocity estimation and for geophysical 
applications in general is not new (van der Baan, 2000). The first use of neural 
networks for velocity estimation was proposed by Roth and Tarantola (1994) where 
neural networks are used to estimate 1D velocity functions from shot gathers.  Nath 
et. al., 1999 used neural networks for travel-time cross-well tomography. After 
training their network using travel -time maps and synthetic velocity models as 
training data, the network was then used to tomographically estimate velocities for 
cross-well data acquired in West Bengal, India.  Although the problem we attempt to 
solve is similar, our work is novel in that it makes use of the recent development of 
more advanced deep neural network (DNN) architectures and moreover, we use all 
of the data (not only selected travel-times) in order to train our DNN and perform 
tomography. 
 
Machine Learning of Tomography Operators via Deep Neural Networks  
Using machine learning algorithms is an appealing alternative to classic seismic 
processing, and among this class of algorithms we have implemented the 
tomography operator using a Deep Neural Network (DNN). The tomography 
operator is learned from seismic training data, using statistical learning (Hastie et al, 
2001) principles. The tomography process is depicted in Figure 1, and it performs 



reconstruction of the velocity model from raw seismic traces, or from features 
computed from raw seismic traces (as part of the tomography operator). In a real-
life application, the ground-truth model is unavailable, and the tomography 
operator is designed to minimize the difference between the reconstructed velocity 
model and the (unavailable) ground-truth one. 
 

 
 
Figure 1: Tomography reconstruction of velocity models from seismic data.   
 
In the statistical learning framework, the tomography operator is learned using a 
collection of ὔ training examplesὢȟὠ , where ὢ denotes the seismic traces (or 
features of seismic traces) generated from the i-th velocity model ὠ.  Specifically, 
the tomography operator is learned by solving the following optimization problem: 
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where Ὕὢȟ is the tomography operator, parameterized by the coefficients vector 
, and its output is the reconstructed velocity model ὠ. The loss function ὒὠȟὠ  

measures the difference between the ground truth velocity model ὠ and its 
reconstructed version ὠ. The loss function we employed is the squared 

error 4ὒὠȟὠ ὠ ὠ , which is frequently used in regression problems, and 

leads to the following optimization problem: 
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A frequently used minimization approach is the Gradient Descent (GD) which 
iteratively updates the coefficients vector as follows: 
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where ‘ is a positive learning rate, ὒ is the empirical loss: 

                                                        
4Note that in the case of two images, the squared error loss is computed pixel-based, 
namely, it is the sum of all squared pixels differences. 
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and the gradient of ὒ, with respect to , is given by: 
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The tomography operator Ὕὢȟ was implemented using a Deep Neural Network 
(DNN), as detailed in the following. 
 
Deep Neural Networks  
DNNs are powerful machine learning algorithms (LeCun et al, 2015, Goodfellow et 
al, 2016), which provide state-of-the-art results in numerous computer vision, 
speech processing, and artificial intelligence problems. In particular, DNNs provide 
excellent results for imaging inverse-problems such as de-noising (Burger et al 
2012, Xie et al, 2012), super-resolution (Dong et al, 2016), compressed-sensing 
(Adler et al, 2017), and X-ray computed tomography (Wang, 2016, Würfl  et al, 
2016). In addition, according to the Universal Approximation Theorem (Hornik et al, 
1989), DNNs can be used to approximate any arbitrary continuous function up to a 
specified accuracy. For these reasons, there is great promise in using this approach 
to approximate complex functions that are highly non-linear.  
 
$..Ó ÁÒÅ ÃÏÍÐÒÉÓÅÄ ÏÆ ȰÌÁÙÅÒÓȱ ÏÆ ×ÅÉÇÈÔÅÄ ÎÏÄÅÓȟ ÁÓ ÄÅÐÉÃÔÅÄ ÉÎ &ÉÇÕÒÅ ςȡ ÔÈÅ ÉÎÐÕÔ 
to the network is connected to the input layer, which is followed by a varying 
number of hidden layers, and eventually the output of the network is computed at 
the output ÌÁÙÅÒȢ %ÁÃÈ ÈÉÄÄÅÎ ÌÁÙÅÒȭÓ ÉÎÐÕÔÓ ÁÒÅ ÁÃÔÉÖÁÔÅÄ ÂÙ ÔÈÅ ÏÕÔÐÕÔÓ ÏÆ ÔÈÅ 
previous layer. These networks are trained with examples, per the statistical 
learning approach where the correct output (label) is known for a given input, and 
the weight parameters in the nodes of the network evolves due to the minimization 
of the error between the prediction and true value. This causes the network to 
increasingly become a better predictor of the training examples, and ultimately of 
any example (assuming proper training) of a class of data that is similar in nature to 
the training data. 



Figure 2: Topology of a Deep Neural Network with three hidden layers. 
 
The proposed tomography operator is therefore described as follows, assuming for 
example three hidden layers: 
 

Ὕὢȟ Ὢ ὪὪὪὢȟ ȟ ȟ ȟ , 
 
where  Ὢ  is the output layer function, parameterized by   and the hidden layer 
functions are ὪȟὪȟὪeach parameterized by ȟȟ, respectively (the vector  is 
composed by ȟȟȟ . 

 
Our ability to design effective neural networks is limited by computing resources 
constraints. More complex networks are more computational demanding to train, 
and the generation of accurate training examples can be computationally expensive 
due to large-scale forward modeling. Ultimately, our predictions are only as good as 
the complexity and refinement of our neural network coupled with the relevance 
and quality of the features that we choose as inputs.  
 
Workflow  
Since we lacked abundant labeled data, this implies that the neural network's best 
result would be bound by the limited number of examples, which often leads to 
over-fitting of the learning procedure to the training data. and control of the main 
parameters involved (data generation) is key when proving a new concept, in this 
work we focus on results for 2D synthetic only. We introduce two workflows, one 
for training and one for inference (aka testing) as explained below.  
 
In the training workflow (Fig 3), the first step is the pseudo-random generation of 
thousands of unbiased velocity models and from them the labels that represent the 
experiment, for instance models with faults or salt bodies. In the second step, a 
modeling step produces the seismic data, for the sake of simplicity and brevity only 
acoustic approximation of the wave equation is used. The third step extracts 



features from the seismic data. The purpose of this step is twofold, on one hand, to 
reduce the amount of data used for training, which therefore alleviate the stress on 
the computing resources, on the other hand, it helps the training to focus on certain 
aspects within the data that are relevant for the experiment, this also helps with the 
accuracy and convergence of the training task. Once we have extracted the features, 
the actual deep learning process starts. Our workflow is fully parametrical, from the 
velocity generation to the feature extraction; therefore, the richness of the 
experiments is comprehensive in terms of variety of velocity models, acquisition 
geometries, etc. 
 

 
Figure 3. Training workflow. 

 
 

 
 
Figure 4. Inference (testing) workflow. 
 
The inference workflow (Figure 4), is the workflow where new models are 
predicted when exposed to unseen or new data. In our particular context of using 
synthetic data, it starts in the same fashion as the training workflow, models and 
data is generated, then that data -that has not been used for training- is presented to 
the predicting model that reconstruct a velocity model.  Since we generate the 
testing data following the mentioned steps, calculations of accuracy of the model are 
straightforward.  
 
Semblance as a feature  for Machine Learning  
Feature extraction is a key step in our workflow as it can greatly improve the 
training of the DNN by providing it with the most relevant data for learning. Our 
Machine Learning platform GeoDNN is capable of handling diverse network 
architectures and data, but given that we desire to learn a velocity tomography 
operator from the data, we perform velocity analysis and provide semblance panels 
for different common midpoint (CMP) locations as the input feature. To calculate the 
semblance panel for a given midpoint, we first apply a normal moveout (NMO) 



correction to a common midpoint gather using the second-order travel time 
equation: 

ὸ  ὸ  
ὼ
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where ὸ  is the calculated NMO travel-time, ὸ is the zero-offset travel time, ὼ is 
the offset and ὠ  is the NMO velocity. By choosing a trial ὠ  we can then 
perform an NMO correction on the gather resulting in an NMO-corrected image 
ήὮȟὯ where Ὦ and k are the corrected NMO time and offset sample indices 
respectively (following the notation of Luo and Hale 2012). Semblance is then 
calculated by stacking along the offset index and smoothing along the time index of 
ήὮȟὯ. This can be expressed mathematically as: 
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where ίὭ is the output semblance at the output time sample Ὥ, ὔ is the total 
number of offset samples and ὓ is a parameter that defines the length of the time-
smoothing window of length ςὓ ρ centered at Ὥ. Additionally, we calculate 
weighting functions that are applied to semblance panels that emphasize terms in 
the semblance calculation that are most sensitive to changes in velocity (Luo and 
Hale 2012). While in the semblance calculation we assume for now only second-
order moveout (i.e., the traditional NMO equation), we have the capability of using 
higher-order terms in the travel-time equation allowing for greater accuracy at far 
offsets (Yilmaz, 2001). 
 
Given that we provide semblance panels for multiple CMP locations, this input 
feature ends up having three dimensions, making a cube. Figures 5 & 6 show us two 
things about this feature space. First, for the particular model that the semblance 
cube represents, we have a high percentage of zero-entry and low value parameters. 
This is true for many models that we perform semblance cubes on, which means 
there is an opportunity to sparsify the parameter space. Second, the events in the 
semblance cube space have patterns that relate to the reflector position and 
velocity. Humans can interpret some of these patterns (such as distinct energy 
spikes / clusters which correspond to sharp unpolluted reflection events). Other 
patterns that are mixed or smeared across the semblance space can imply non-
uniqueness which is much more difficult to derive a model approximation from. The 
advantage of using machine learning is that we are able to leverage the ability of the 
DNN to learn from a multitude of examples to discover complex patterns that would 
otherwise be very expensive and difficult to learn and utilize. Using these patterns, 
we can learn a mapping from the semblance space to the velocity model space. 
Alternative methods like inversion can be very expensive because the mapping 
between these spaces uses wave propagation (or some other approximation) as the 
forward operator. Other methods would try to linearize the forward operator, or 
follow some more simplistic methodology like picking velocities from peak 



amplitudes in the semblance cube. All of these methods need to be repeated for each 
model of interest. Using a DNN methodology, we need to only train once, after which 
subsequent model approximations can be found from their corresponding 
semblance plots at negligible cost. 
 
As stated, the nature of using semblance as a feature input is that there are patterns 
that have meaning in relation to the velocity model, some of which are trivial to 
explain while others are more complex. DNN architectures fundamentally learn 
patterns in the feature space using stencils whose dimensions are predetermined. 
We believe that the geophysics based transformation that the semblance cube 
represents make it a good choice as an input feature for deep learning for 
tomographic velocity estimation, especially for DNN architectures that can leverage 
the patterns that are found in that space. 
 

 
Figure 5. A calculated semblance cube used as an input feature for deep learning. 
The front face of the cube (with axes of zero-offset time and velocity) shows the 
semblance panel for a particular CMP location used in traditional velocity analysis. 
The side face of the cube (with axes of CMP location and zero-offset time) shows the 
calculated semblance for a particular velocity for all CMP locations and time. Note 
the spatially coherent structure of the semblance in the cube. 



 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  
 

(a)                                                                                  (b) 
Figure 6. An example of a calculated semblance cube for a seven-layer model. Note 
that the traditional velocity analysis panel of the semblance cube shown in (b) 
captures each of the layer interfaces. Also, note that the right panel (axes of CMP 
location and zero-offset time) of the semblance cube qualitatively gives the 
approximate structure of the velocity model shown in (a).  
 
Implementation and R esults 
We generated thousands of random two-dimensional velocity models with up to 
four faults in them, of varying strike, dip angle, and position. Our models had 
between three and eight layers each, with velocities varying from 2000 to 4000 
[m/s], with layer velocity increasing with depth. These models were 140x180 grid 
points at the sampling used for wave equation solving. The raw data collected was 
reduced to a semblance feature set that can fit in multiple NVIDIA K80 GPGPU 
memory. 
 
We trained the proposed DNN using a training set composed of tens of thousands of 
velocity models, and tested the tomography results with a testing set of thousands 
of velocity models. 
 
Experiments type I: 
The output of the DNN is continuous valued image, whereas the ground-truth 
velocity model images are comprised from a discrete number of values, each 
correspond to a unique velocity value. Therefore, we have applied a post-processing 



image segmentation (Szeliski, 2010) stage to each reconstructed velocity model 
using two methods: (1) K-Means segmentation which uses the ground-truth number 
of layers in order to cluster all pixels into to correct number of segments. (2) K-
Means segmentation with 8 segments (layers) for all velocity models (in a real 
application, the number of segments can be controlled). The visual quality of each 
segmented image was compared against the ground truth velocity model (i.e. test 
example label), using the Structural Similarity Image Metric (SSIM), developed by 
Wang et. al. (Wang, 2004). The SSIM metric is computed using three image features 
that mostly influence the human visual system: structure, contrast and luminance. 
Given two images, the SSIM formula computes a continuous number between 0.0 to 
1.0, where 1.0 corresponds to identical images, and 0.0 corresponds to complete 
visually dissimilar images. The SSIM metric is considered more coherent to human 
judgment, than the Mean Squared Error (MSE) metric, for image comparisons. The 
averaged SSIM over thousands of test velocity models is 0.8717 for K-Means with 
the correct number of segments, and 0.8603 for K-Means with 8 segments for all 
images, which clearly indicate very high similarity to the ground truth velocity 
models.  In Figures 7, we provide examples of the reconstructed velocity models 
with varying numbers of layers, which demonstrate the high visual quality of the 
reconstructed images. We have observed that the reconstruction network tends to 
smooth faults (third row of F igure 7), and further improvements for accurate faults 
reconstruction are left for future research. 

 



 
Figure 7. Tomography with 4-7 velocities: (column a) Ground truth (column b) DNN 
output image (column c) Segmented image using K-Means and the correct number 
of layers; and (column d) Segmented image using K-Means and 8 layers. 
 
Experiments type II: 
In this set of the experiments the labels and reconstructed models are continues 
value (not a binary or multiclass classification process) that represents velocity. 
Some of the labels and models include salt bodies along with 3 to 7 layers. The 
evaluation metrics are R2score (coefficient of determination) and SSIM as described 
above. R2 score measures the total variation of the outcomes provided by the model, 
it is interpreted as the goodness of the model fitting, the values can be negative and 
the optimal value is 1. 
 
 
 
 
 
 
 
 



 

 

Figure 8.  In the top row left column a layered model is presented as ground truth 
(label), the right column shows the prediction generated with the trained model. 
That model was training with data that only contains layered models with different 
number of layers and velocity per layer. The predicted model closely resembles the 



label in structure and actual velocity. The mid and bottom row are results for a 
different trained model, this one has been trained with a dataset that also contains 
salt bodies, which has been handcrafted. 
 

 
Figure 9. Validation loss function value (red curve related to left Y axis) informs 
about the effectiveness of the training process. Green and blue curves (related to the 
right Y axis) represent the evolution of the accuracy metrics during training with 
salt bodies. The horizontal axis represents training epochs. 
 
In terms of prediction accuracy, for experiments that only contain layers (Figure 8 
top), the R2 score is 0.8124 and SSIM is 0.8939, which is comparable to the results 
obtained for the set of experiments of type I.  For the experiments with and without 
salt bodies (Figure 8, mid and bottom) the R2 score is 0.5536 and the SSIM is 0.8101. 
As expected, the task of predicting a model with salt bodies is more difficult and 
therefore the performance is lower than the task of predicting plain velocity models. 
Also, the variability of the salt bodies shape and location is more difficult to learn 
with the size of training dataset, that used, this explains why the R2 score is more 
affected (Figure 9) than the SSIM for this case. In any case, the overall performance 
trend is positive, the salt bodies are located properly and the surrounding structure 
resembles the labels in direction and velocity value.  
 
Conclusions 
The concept introduced here has enormous potential, just from the computing 
perspective the results were computed in a single computing node, not in a cluster, 
further the input to the ML system has only one type of feature and the number of 
training samples is tens of thousands, which barely falls in the big data category. All 
these elements when scaled up can contribute to improve the accuracy and 
generalization of the predicting models. 


