
Deep Learning Tomography
Mauricio Araya-Polo1, Joseph Jennings12, Amir Adler3, Taylor Dahlke2

Abstract
Velocity model building (VMB) is a key step in hydrocarbon exploration; The VMB
main product is an initial model of the subsurface that is subsequently used in
seismic imaging and interpretation workflows. Reflection or refraction Tomography
and full waveform inversion (FWI) are the most commonly used techniques in VMB.
On one hand, Tomography is a time-consuming activity that relies on successive
updates of highly human-curated analysis of gathers. On the other hand, FWI is very
computationally demanding with no guarantees of global convergence.

We propose and implement a novel concept that bypasses these demanding steps,
directly producing an accurate gridding or layered velocity model from shot gathers.
Our approach relies on training deep neural networks; the resulting predictive
model maps relationships between the data space and the final output (particularly,
the presence of high velocity segments that might indicate salt formations). In term
of time, the training task takes a few hours for 2D data, but the inference step
(predicting a model from previously unseen data) takes only seconds.

 The promising results shown here for synthetic 2D data demonstrate a new way of
using seismic data and suggests fast turnaround of workflows that now make use of
machine learning approaches to identify key structures in the subsurface.

Introduction
Exploration workflows are under great pressure, from improving performance at
lower costs to the ongoing avalanche of data coming from new generations of
sensors and modern acquisition systems. Some of the key steps in these workflows
depend on domain experts, their time is precious and limited, but the amount of
data that needs to be thoroughly analyzed is increasing. In addition, the complexity
of some of the exploration areas requires extra attention. The problem can be
summarized as an explosion of data, which are increasingly more complex than even
before.
Geoscientists need to be empowered with new tools, tools that digest, as much of
the data is possible before the human expert intervenes. The High Performance
Computing (HPC) revolution of the ten years (BizTech, 2014) shares the same
purpose but essentially targets processing speed rather than any other specific step
of the exploration workflow.

1 Shell International Exploration & Production Inc.
2 Stanford University
3 MIT, Center for Brains, Minds and Machines, e-mail: adleram@mit.edu

This work was supported by the Center for Brains, Minds and Machines (CBMM),
funded by NSF STC award CCF ɀ 1231216.

This time around advanced data-oriented algorithms look to improve every step of
the workflow through a deeper understanding of the data, from extracting the
relevant information to a better awareness of the rest of the steps in a more
integrated fashion rather silos of knowledge.

What we propose in this work goes beyond what is becoming the new norm, which
is Machine Learning (ML) techniques being applied to specific well-known steps of
the workflow. This same magazine carried a special edition on how Analytics and
ML (March 2017) techniques are paving inroads in different aspects of the
exploration workflow, but still most work is focused on identifying features or
attributes in migrated images (Hale, 2012; Hale, 2013; Guillen, 2015; Addison, 2016;
Bougher et al, 2016), therefore helping to tackle the interpretation step, very few
has been proposed on helping directly processing or VMB. In general, the literature
is abundant with refinements to this workflow, but still it rema ins largely
untouched.

Our method produces velocity models directly from raw seismic data in a way that
is alternative to classic Tomography, also it is automatic and without human
intervention . The ML technique employed follows recent work (Frogner et al, 2015;
Zhang et al, 2014; Dahlke et al, 2016, Araya-Polo et al, 2017) that demonstrates this
new approach, which uses a Deep Neural Network (DNN) statistical model to
transform raw input seismic data directly to the final mapping in 2D or 3D. The
computational costs come mostly from train ing and this happens only once up front.
After training, velocity model reconstruction costs are negligible, thus making the
overall computing costs a fraction of the time needed for traditional techniques, in
particular the ones involving partial differential equations-based simulation. One
key element of our method is the use of a feature based on semblance, therefore this
feature pre-digest velocity information for the training process, still this feature
extraction step is automated and not subjected to human bias.

In terms of deployment modes, we foresee models being trained with specific data
belonging to different major formations, such as unconventional, pre-salt or subsalt.
The main concerns relate to the generalization error , which basically set the limits
on how much a predicting model can accurately predict for unseen data. Finally,
regarding exploration workflows, one can imagine this technique being used just
after data acquisition, then trained models are loaded up to the cloud from which
interpreter s can pull realizations, thus performing online scenarios testing when
feeding back their model modifications to applications such as the one proposed in
Araya-Poloet al, 2017. This imagined workflow is fully ML-based, flexible and with
the domain experts at the center of the critical decision making process; if it is
accompanied by the proper resourcing this workflow approaches significantly to a
real-time ubiquitous experience.

The layout of the paper is as follows; we start by explaining the basics of the
problem followed by discussions on Deep Learning. Next, we introduce the general
workflow used by our ML system, that we termed GeoDNN. After that, we discuss

our results and experiments with 2D synthetic data. Finally, conclusions are
presented which include the directions for future work.

Problem formulation
Formally, the traditional tomography problem can be expressed as the minimization
of the following objective function:

ὐά ȿȿὨ ά Ὠ ȿȿȟ

where ά is the optimal velocity model that minimizes ὐά , Ὠ is a data vector that
is modeled from a non-linear modeling operator Ὢά , and Ὠ is the recorded data
vector. While it is common to minimize the sum of the squares (represented here by
the square of the L2 norm), other objective functions may be used. Note that in the
case of travel-time tomography the data vectors contain travel-times that are
modeled via the solution of the Eikonal equation. Alternatively, in the FWI case, the
data contain the seismic traces that are modeled via the numerical solution of the
wave-equation.

As is apparent by the non-linear relationship between Ὠ and ά this inversion is
nonlinear. Additionally, since for reflection seismic surveys Ὠ contains surface
seismic data, it does not contain all of the necessary information to define a velocity
model that varies arbitrarily with depth and along the horizontal directions (Biondi,
2001). This means that, in general, minimizing the above equation is an ill-posed
problem. While in using a deep learning approach to tomography we do not rely on
numerical solutions of the Eikonal or wave-equations, we still need to consider the
nonlinearity and ill -posed nature of this inverse problem.

The application of neural networks for velocity estimation and for geophysical
applications in general is not new (van der Baan, 2000). The first use of neural
networks for velocity estimation was proposed by Roth and Tarantola (1994) where
neural networks are used to estimate 1D velocity functions from shot gathers. Nath
et. al., 1999 used neural networks for travel-time cross-well tomography. After
training their network using travel -time maps and synthetic velocity models as
training data, the network was then used to tomographically estimate velocities for
cross-well data acquired in West Bengal, India. Although the problem we attempt to
solve is similar, our work is novel in that it makes use of the recent development of
more advanced deep neural network (DNN) architectures and moreover, we use all
of the data (not only selected travel-times) in order to train our DNN and perform
tomography.

Machine Learning of Tomography Operators via Deep Neural Networks
Using machine learning algorithms is an appealing alternative to classic seismic
processing, and among this class of algorithms we have implemented the
tomography operator using a Deep Neural Network (DNN). The tomography
operator is learned from seismic training data, using statistical learning (Hastie et al,
2001) principles. The tomography process is depicted in Figure 1, and it performs

reconstruction of the velocity model from raw seismic traces, or from features
computed from raw seismic traces (as part of the tomography operator). In a real-
life application, the ground-truth model is unavailable, and the tomography
operator is designed to minimize the difference between the reconstructed velocity
model and the (unavailable) ground-truth one.

Figure 1: Tomography reconstruction of velocity models from seismic data.

In the statistical learning framework, the tomography operator is learned using a
collection of ὔ training examplesὢȟὠ , where ὢ denotes the seismic traces (or
features of seismic traces) generated from the i-th velocity model ὠ. Specifically,
the tomography operator is learned by solving the following optimization problem:

()ä
= ö

ö
ö

÷

õ

æ
æ
æ

ç

å

=
N

i
V

ii

i

XTVL
N 1

Ĕ

,,
1

minargĔ
)()'&
aa

a
,

where Ὕὢȟ is the tomography operator, parameterized by the coefficients vector
, and its output is the reconstructed velocity model ὠ. The loss function ὒὠȟὠ

measures the difference between the ground truth velocity model ὠ and its
reconstructed version ὠ. The loss function we employed is the squared

error 4ὒὠȟὠ ὠ ὠ , which is frequently used in regression problems, and

leads to the following optimization problem:

()()ä
=

-=
N

i

ii XTV
N 1

2
,

1
minargĔ aa
a

.

A frequently used minimization approach is the Gradient Descent (GD) which
iteratively updates the coefficients vector as follows:

 ‘
ὒ

where ‘ is a positive learning rate, ὒ is the empirical loss:

4Note that in the case of two images, the squared error loss is computed pixel-based,
namely, it is the sum of all squared pixels differences.

()()ä
=

=
N

i

ii XTVL
N

L
1

E ,,
1

 a ,

and the gradient of ὒ, with respect to , is given by:

()()ä
=µ

µ
=

µ

µ N

i

ii XTV
L

N

L

1

E ,,
1

 a
aa

.

The tomography operator Ὕὢȟ was implemented using a Deep Neural Network
(DNN), as detailed in the following.

Deep Neural Networks
DNNs are powerful machine learning algorithms (LeCun et al, 2015, Goodfellow et
al, 2016), which provide state-of-the-art results in numerous computer vision,
speech processing, and artificial intelligence problems. In particular, DNNs provide
excellent results for imaging inverse-problems such as de-noising (Burger et al
2012, Xie et al, 2012), super-resolution (Dong et al, 2016), compressed-sensing
(Adler et al, 2017), and X-ray computed tomography (Wang, 2016, Würfl et al,
2016). In addition, according to the Universal Approximation Theorem (Hornik et al,
1989), DNNs can be used to approximate any arbitrary continuous function up to a
specified accuracy. For these reasons, there is great promise in using this approach
to approximate complex functions that are highly non-linear.

$..Ó ÁÒÅ ÃÏÍÐÒÉÓÅÄ ÏÆ ȰÌÁÙÅÒÓȱ ÏÆ ×ÅÉÇÈÔÅÄ ÎÏÄÅÓȟ ÁÓ ÄÅÐÉÃÔÅÄ ÉÎ &ÉÇÕÒÅ ςȡ ÔÈÅ ÉÎÐÕÔ
to the network is connected to the input layer, which is followed by a varying
number of hidden layers, and eventually the output of the network is computed at
the output ÌÁÙÅÒȢ %ÁÃÈ ÈÉÄÄÅÎ ÌÁÙÅÒȭÓ ÉÎÐÕÔÓ ÁÒÅ ÁÃÔÉÖÁÔÅÄ ÂÙ ÔÈÅ ÏÕÔÐÕÔÓ ÏÆ ÔÈÅ
previous layer. These networks are trained with examples, per the statistical
learning approach where the correct output (label) is known for a given input, and
the weight parameters in the nodes of the network evolves due to the minimization
of the error between the prediction and true value. This causes the network to
increasingly become a better predictor of the training examples, and ultimately of
any example (assuming proper training) of a class of data that is similar in nature to
the training data.

Figure 2: Topology of a Deep Neural Network with three hidden layers.

The proposed tomography operator is therefore described as follows, assuming for
example three hidden layers:

Ὕὢȟ Ὢ ὪὪὪὢȟ ȟ ȟ ȟ ,

where Ὢ is the output layer function, parameterized by and the hidden layer
functions are ὪȟὪȟὪeach parameterized by ȟȟ, respectively (the vector is
composed by ȟȟȟ .

Our ability to design effective neural networks is limited by computing resources
constraints. More complex networks are more computational demanding to train,
and the generation of accurate training examples can be computationally expensive
due to large-scale forward modeling. Ultimately, our predictions are only as good as
the complexity and refinement of our neural network coupled with the relevance
and quality of the features that we choose as inputs.

Workflow
Since we lacked abundant labeled data, this implies that the neural network's best
result would be bound by the limited number of examples, which often leads to
over-fitting of the learning procedure to the training data. and control of the main
parameters involved (data generation) is key when proving a new concept, in this
work we focus on results for 2D synthetic only. We introduce two workflows, one
for training and one for inference (aka testing) as explained below.

In the training workflow (Fig 3), the first step is the pseudo-random generation of
thousands of unbiased velocity models and from them the labels that represent the
experiment, for instance models with faults or salt bodies. In the second step, a
modeling step produces the seismic data, for the sake of simplicity and brevity only
acoustic approximation of the wave equation is used. The third step extracts

features from the seismic data. The purpose of this step is twofold, on one hand, to
reduce the amount of data used for training, which therefore alleviate the stress on
the computing resources, on the other hand, it helps the training to focus on certain
aspects within the data that are relevant for the experiment, this also helps with the
accuracy and convergence of the training task. Once we have extracted the features,
the actual deep learning process starts. Our workflow is fully parametrical, from the
velocity generation to the feature extraction; therefore, the richness of the
experiments is comprehensive in terms of variety of velocity models, acquisition
geometries, etc.

Figure 3. Training workflow.

Figure 4. Inference (testing) workflow.

The inference workflow (Figure 4), is the workflow where new models are
predicted when exposed to unseen or new data. In our particular context of using
synthetic data, it starts in the same fashion as the training workflow, models and
data is generated, then that data -that has not been used for training- is presented to
the predicting model that reconstruct a velocity model. Since we generate the
testing data following the mentioned steps, calculations of accuracy of the model are
straightforward.

Semblance as a feature for Machine Learning
Feature extraction is a key step in our workflow as it can greatly improve the
training of the DNN by providing it with the most relevant data for learning. Our
Machine Learning platform GeoDNN is capable of handling diverse network
architectures and data, but given that we desire to learn a velocity tomography
operator from the data, we perform velocity analysis and provide semblance panels
for different common midpoint (CMP) locations as the input feature. To calculate the
semblance panel for a given midpoint, we first apply a normal moveout (NMO)

correction to a common midpoint gather using the second-order travel time
equation:

ὸ ὸ
ὼ

ὠ

where ὸ is the calculated NMO travel-time, ὸ is the zero-offset travel time, ὼ is
the offset and ὠ is the NMO velocity. By choosing a trial ὠ we can then
perform an NMO correction on the gather resulting in an NMO-corrected image
ήὮȟὯ where Ὦ and k are the corrected NMO time and offset sample indices
respectively (following the notation of Luo and Hale 2012). Semblance is then
calculated by stacking along the offset index and smoothing along the time index of
ήὮȟὯ. This can be expressed mathematically as:

ίὭ
В В ήὮȟὯ

ὔВ В ήὮȟὯ

where ίὭ is the output semblance at the output time sample Ὥ, ὔ is the total
number of offset samples and ὓ is a parameter that defines the length of the time-
smoothing window of length ςὓ ρ centered at Ὥ. Additionally, we calculate
weighting functions that are applied to semblance panels that emphasize terms in
the semblance calculation that are most sensitive to changes in velocity (Luo and
Hale 2012). While in the semblance calculation we assume for now only second-
order moveout (i.e., the traditional NMO equation), we have the capability of using
higher-order terms in the travel-time equation allowing for greater accuracy at far
offsets (Yilmaz, 2001).

Given that we provide semblance panels for multiple CMP locations, this input
feature ends up having three dimensions, making a cube. Figures 5 & 6 show us two
things about this feature space. First, for the particular model that the semblance
cube represents, we have a high percentage of zero-entry and low value parameters.
This is true for many models that we perform semblance cubes on, which means
there is an opportunity to sparsify the parameter space. Second, the events in the
semblance cube space have patterns that relate to the reflector position and
velocity. Humans can interpret some of these patterns (such as distinct energy
spikes / clusters which correspond to sharp unpolluted reflection events). Other
patterns that are mixed or smeared across the semblance space can imply non-
uniqueness which is much more difficult to derive a model approximation from. The
advantage of using machine learning is that we are able to leverage the ability of the
DNN to learn from a multitude of examples to discover complex patterns that would
otherwise be very expensive and difficult to learn and utilize. Using these patterns,
we can learn a mapping from the semblance space to the velocity model space.
Alternative methods like inversion can be very expensive because the mapping
between these spaces uses wave propagation (or some other approximation) as the
forward operator. Other methods would try to linearize the forward operator, or
follow some more simplistic methodology like picking velocities from peak

amplitudes in the semblance cube. All of these methods need to be repeated for each
model of interest. Using a DNN methodology, we need to only train once, after which
subsequent model approximations can be found from their corresponding
semblance plots at negligible cost.

As stated, the nature of using semblance as a feature input is that there are patterns
that have meaning in relation to the velocity model, some of which are trivial to
explain while others are more complex. DNN architectures fundamentally learn
patterns in the feature space using stencils whose dimensions are predetermined.
We believe that the geophysics based transformation that the semblance cube
represents make it a good choice as an input feature for deep learning for
tomographic velocity estimation, especially for DNN architectures that can leverage
the patterns that are found in that space.

Figure 5. A calculated semblance cube used as an input feature for deep learning.
The front face of the cube (with axes of zero-offset time and velocity) shows the
semblance panel for a particular CMP location used in traditional velocity analysis.
The side face of the cube (with axes of CMP location and zero-offset time) shows the
calculated semblance for a particular velocity for all CMP locations and time. Note
the spatially coherent structure of the semblance in the cube.

(a) (b)
Figure 6. An example of a calculated semblance cube for a seven-layer model. Note
that the traditional velocity analysis panel of the semblance cube shown in (b)
captures each of the layer interfaces. Also, note that the right panel (axes of CMP
location and zero-offset time) of the semblance cube qualitatively gives the
approximate structure of the velocity model shown in (a).

Implementation and R esults
We generated thousands of random two-dimensional velocity models with up to
four faults in them, of varying strike, dip angle, and position. Our models had
between three and eight layers each, with velocities varying from 2000 to 4000
[m/s], with layer velocity increasing with depth. These models were 140x180 grid
points at the sampling used for wave equation solving. The raw data collected was
reduced to a semblance feature set that can fit in multiple NVIDIA K80 GPGPU
memory.

We trained the proposed DNN using a training set composed of tens of thousands of
velocity models, and tested the tomography results with a testing set of thousands
of velocity models.

Experiments type I:
The output of the DNN is continuous valued image, whereas the ground-truth
velocity model images are comprised from a discrete number of values, each
correspond to a unique velocity value. Therefore, we have applied a post-processing

image segmentation (Szeliski, 2010) stage to each reconstructed velocity model
using two methods: (1) K-Means segmentation which uses the ground-truth number
of layers in order to cluster all pixels into to correct number of segments. (2) K-
Means segmentation with 8 segments (layers) for all velocity models (in a real
application, the number of segments can be controlled). The visual quality of each
segmented image was compared against the ground truth velocity model (i.e. test
example label), using the Structural Similarity Image Metric (SSIM), developed by
Wang et. al. (Wang, 2004). The SSIM metric is computed using three image features
that mostly influence the human visual system: structure, contrast and luminance.
Given two images, the SSIM formula computes a continuous number between 0.0 to
1.0, where 1.0 corresponds to identical images, and 0.0 corresponds to complete
visually dissimilar images. The SSIM metric is considered more coherent to human
judgment, than the Mean Squared Error (MSE) metric, for image comparisons. The
averaged SSIM over thousands of test velocity models is 0.8717 for K-Means with
the correct number of segments, and 0.8603 for K-Means with 8 segments for all
images, which clearly indicate very high similarity to the ground truth velocity
models. In Figures 7, we provide examples of the reconstructed velocity models
with varying numbers of layers, which demonstrate the high visual quality of the
reconstructed images. We have observed that the reconstruction network tends to
smooth faults (third row of F igure 7), and further improvements for accurate faults
reconstruction are left for future research.

Figure 7. Tomography with 4-7 velocities: (column a) Ground truth (column b) DNN
output image (column c) Segmented image using K-Means and the correct number
of layers; and (column d) Segmented image using K-Means and 8 layers.

Experiments type II:
In this set of the experiments the labels and reconstructed models are continues
value (not a binary or multiclass classification process) that represents velocity.
Some of the labels and models include salt bodies along with 3 to 7 layers. The
evaluation metrics are R2score (coefficient of determination) and SSIM as described
above. R2 score measures the total variation of the outcomes provided by the model,
it is interpreted as the goodness of the model fitting, the values can be negative and
the optimal value is 1.

Figure 8. In the top row left column a layered model is presented as ground truth
(label), the right column shows the prediction generated with the trained model.
That model was training with data that only contains layered models with different
number of layers and velocity per layer. The predicted model closely resembles the

label in structure and actual velocity. The mid and bottom row are results for a
different trained model, this one has been trained with a dataset that also contains
salt bodies, which has been handcrafted.

Figure 9. Validation loss function value (red curve related to left Y axis) informs
about the effectiveness of the training process. Green and blue curves (related to the
right Y axis) represent the evolution of the accuracy metrics during training with
salt bodies. The horizontal axis represents training epochs.

In terms of prediction accuracy, for experiments that only contain layers (Figure 8
top), the R2 score is 0.8124 and SSIM is 0.8939, which is comparable to the results
obtained for the set of experiments of type I. For the experiments with and without
salt bodies (Figure 8, mid and bottom) the R2 score is 0.5536 and the SSIM is 0.8101.
As expected, the task of predicting a model with salt bodies is more difficult and
therefore the performance is lower than the task of predicting plain velocity models.
Also, the variability of the salt bodies shape and location is more difficult to learn
with the size of training dataset, that used, this explains why the R2 score is more
affected (Figure 9) than the SSIM for this case. In any case, the overall performance
trend is positive, the salt bodies are located properly and the surrounding structure
resembles the labels in direction and velocity value.

Conclusions
The concept introduced here has enormous potential, just from the computing
perspective the results were computed in a single computing node, not in a cluster,
further the input to the ML system has only one type of feature and the number of
training samples is tens of thousands, which barely falls in the big data category. All
these elements when scaled up can contribute to improve the accuracy and
generalization of the predicting models.

