During the last few years, significant progress has been made in the theoretical understanding of deep networks. We review our contributions in the areas of approximation theory and optimization. We also introduce a new approach based on cross‐validation leave‐one‐out stability to estimate bounds on the expected error of overparametrized classifiers, such as deep networks.

%B IEEJ Transactions on Electrical and Electronic Engineering %V 15 %P 1560 - 1571 %8 10/2020 %G eng %U https://onlinelibrary.wiley.com/toc/19314981/15/11 %N 11 %! IEEJ Trans Elec Electron Eng %R 10.1002/tee.23243 %0 Journal Article %J Proceedings of the National Academy of Sciences %D 2020 %T Theoretical issues in deep networks %A Poggio, Tomaso %A Banburski, Andrzej %A Liao, Qianli %XWhile deep learning is successful in a number of applications, it is not yet well understood theoretically. A theoretical characterization of deep learning should answer questions about their approximation power, the dynamics of optimization, and good out-of-sample performance, despite overparameterization and the absence of explicit regularization. We review our recent results toward this goal. In approximation theory both shallow and deep networks are known to approximate any continuous functions at an exponential cost. However, we proved that for certain types of compositional functions, deep networks of the convolutional type (even without weight sharing) can avoid the curse of dimensionality. In characterizing minimization of the empirical exponential loss we consider the gradient flow of the weight directions rather than the weights themselves, since the relevant function underlying classification corresponds to normalized networks. The dynamics of normalized weights turn out to be equivalent to those of the constrained problem of minimizing the loss subject to a unit norm constraint. In particular, the dynamics of typical gradient descent have the same critical points as the constrained problem. Thus there is implicit regularization in training deep networks under exponential-type loss functions during gradient flow. As a consequence, the critical points correspond to minimum norm minimizers. This result is especially relevant because it has been recently shown that, for overparameterized models, selection of a minimum norm solution optimizes cross-validation leave-one-out stability and thereby the expected error. Thus our results imply that gradient descent in deep networks minimize the expected error.

%B Proceedings of the National Academy of Sciences %P 201907369 %8 Sep-06-2020 %G eng %U https://www.pnas.org/content/early/2020/06/08/1907369117 %! Proc Natl Acad Sci USA %R 10.1073/pnas.1907369117