Publication

Found 158 results
Author [ Title(Asc)] Type Year
Filters: Author is Tomaso Poggio  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
Poggio, T. & Meyers, E. Turing++ Questions: A Test for the Science of (Human) Intelligence. AI Magazine 37 , 73-77 (2016).PDF icon Turing_Plus_Questions.pdf (424.91 KB)
Poggio, T. & Squire, L. R. The History of Neuroscience in Autobiography Volume 8 8, (Society for Neuroscience, 2014).PDF icon Volume Introduction and Preface (232.8 KB)PDF icon TomasoPoggio.pdf (1.43 MB)
Poggio, T. et al. Theory of Deep Learning III: explaining the non-overfitting puzzle. (2017).PDF icon CBMM-Memo-073.pdf (2.65 MB)PDF icon CBMM Memo 073 v2 (revised 1/15/2018) (2.81 MB)PDF icon CBMM Memo 073 v3 (revised 1/30/2018) (2.72 MB)PDF icon CBMM Memo 073 v4 (revised 12/30/2018) (575.72 KB)
Zhang, C. et al. Theory of Deep Learning IIb: Optimization Properties of SGD. (2017).PDF icon CBMM-Memo-072.pdf (3.66 MB)
Banburski, A. et al. Theory III: Dynamics and Generalization in Deep Networks. (2018).PDF icon Original, intermediate versions are available under request (2.67 MB)PDF icon CBMM Memo 90 v12.pdf (4.74 MB)PDF icon Theory_III_ver44.pdf Update Hessian (4.12 MB)PDF icon Theory_III_ver48 (Updated discussion of convergence to max margin) (2.56 MB)PDF icon fixing errors and sharpening some proofs (2.45 MB)
Poggio, T. & Liao, Q. Theory II: Landscape of the Empirical Risk in Deep Learning. (2017).PDF icon CBMM Memo 066_1703.09833v2.pdf (5.56 MB)
Poggio, T. & Liao, Q. Theory II: Deep learning and optimization. Bulletin of the Polish Academy of Sciences: Technical Sciences 66, (2018).PDF icon 03_775-788_00920_Bpast.No_.66-6_31.12.18_K2.pdf (5.43 MB)
Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B. & Liao, Q. Theory I: Why and When Can Deep Networks Avoid the Curse of Dimensionality?. (2016).PDF icon CBMM-Memo-058v1.pdf (2.42 MB)PDF icon CBMM-Memo-058v5.pdf (2.45 MB)PDF icon CBMM-Memo-058-v6.pdf (2.74 MB)PDF icon Proposition 4 has been deleted (2.75 MB)
Poggio, T. & Liao, Q. Theory I: Deep networks and the curse of dimensionality. Bulletin of the Polish Academy of Sciences: Technical Sciences 66, (2018).PDF icon 02_761-774_00966_Bpast.No_.66-6_28.12.18_K1.pdf (1.18 MB)
Liao, Q., Banburski, A. & Poggio, T. Theories of Deep Learning: Approximation, Optimization and Generalization . TECHCON 2019 (2019).
Poggio, T., Banburski, A. & Liao, Q. Theoretical issues in deep networks. Proceedings of the National Academy of Sciences 201907369 (2020). doi:10.1073/pnas.1907369117PDF icon PNASlast.pdf (915.3 KB)
Poggio, T., Banburski, A. & Liao, Q. Theoretical Issues in Deep Networks. (2019).PDF icon CBMM Memo 100 v1 (1.71 MB)PDF icon CBMM Memo 100 v3 (8/25/2019) (1.31 MB)PDF icon CBMM Memo 100 v4 (11/19/2019) (1008.23 KB)

Pages