Export 87 results:
Filters: Author is Tenenbaum, Joshua B.  [Clear All Filters]
Ullman, T. D. & Tenenbaum, J. B. Bayesian Models of Conceptual Development: Learning as Building Models of the World. Annual Review of Developmental Psychology 2, 533 - 558 (2020).
Yildirim, I., Belledonne, M., Freiwald, W. A. & Tenenbaum, J. B. Efficient inverse graphics in biological face processing. Science Advances 6, eaax5979 (2020).PDF icon eaax5979.full_.pdf (3.22 MB)
Tian, L., Ellis, K., Kryven, M. & Tenenbaum, J. B. Learning abstract structure for drawing by efficient motor program induction. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020). at <>
Nye, M., Solar-Lezama, A., Tenenbaum, J. B. & Lake, B. M. Learning Compositional Rules via Neural Program Synthesis. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020). at <>PDF icon 2003.05562.pdf (2.51 MB)
Levine, S., Kleiman-Weiner, M., Schulz, L., Tenenbaum, J. B. & Cushman, F. A. The logic of universalization guides moral judgment. Proceedings of the National Academy of Sciences (PNAS) 202014505 (2020). doi:10.1073/pnas.2014505117
Sheskin, M. et al. Online Developmental Science to Foster Innovation, Access, and Impact. Trends in Cognitive Sciences 24, 675 - 678 (2020).
Netanyahu, A., Shu, T., Katz, B., Barbu, A. & Tenenbaum, J. B. PHASE: PHysically-grounded Abstract Social Eventsfor Machine Social Perception. Shared Visual Representations in Human and Machine Intelligence (SVRHM) workshop at NeurIPS 2020 (2020). at <>PDF icon phase_physically_grounded_abstract_social_events_for_machine_social_perception.pdf (2.49 MB)
Allen, K., Smith, K. A. & Tenenbaum, J. B. Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning. Proceedings of the National Academy of Sciences 201912341 (2020). doi:10.1073/pnas.1912341117PDF icon 1912341117.full_.pdf (2.15 MB)
Dasgupta, I., Schulz, E., Tenenbaum, J. B. & Gershman, S. J. A theory of learning to infer. Psychological Review 127, 412 - 441 (2020).
Gen, C. et al. ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv (2020). at <>PDF icon 2007.04954.pdf (7.06 MB)
Schwartz, J. et al. ThreeDWorld (TDW): A High-Fidelity, Multi-Modal Platform for Interactive Physical Simulation. (2020). at <>
Eisape, T., Levy, R., Tenenbaum, J. B. & Zaslavsky, N. Toward human-like object naming in artificial neural systems . International Conference on Learning Representations (ICLR 2020), Bridging AI and Cognitive Science workshop (2020).
Kryven, M., Niemi, L., Paul, L. & Tenenbaum, J. B. Choosing a Transformative Experience . Cognitive Sciences Society (2019).
Kryven, M., Scholl, B. & Tenenbaum, J. B. Does intuitive inference of physical stability interruptattention?. Cognitive Sciences Society (2019).
Ullman, T. D. et al. Draping an Elephant: Uncovering Children's Reasoning About Cloth-Covered Objects. Cognitive Science Society (2019). at <>PDF icon Draping an Elephant: Uncovering Children's Reasoning About Cloth-Covered Objects.pdf (2.62 MB)
Serrino, J., Kleiman-Weiner, M., Parkes, D. C. & Tenenbaum, J. B. Finding Friend and Foe in Multi-Agent Games. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon Max KW paper.pdf (928.96 KB)
Yildirim, I., Wu, J., Kanwisher, N. & Tenenbaum, J. B. An integrative computational architecture for object-driven cortex. Current Opinion in Neurobiology 55, 73 - 81 (2019).
Schwettmann, S., Tenenbaum, J. B. & Kanwisher, N. Invariant representations of mass in the human brain. eLife 8, (2019).
Smith, K. A. et al. Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (2019). at <http: //>PDF icon ADEPT_NeurIPS.pdf (11.07 MB)
Barbu, A. et al. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9142-objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.pdf (16.31 MB)
Chu, J., Gauthier, J., Levy, R., Tenenbaum, J. B. & Schulz, L. Query-guided visual search . 41st Annual conference of the Cognitive Science Society (2019).
Fazeli, N. et al. See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion. Science Robotics 4, eaav3123 (2019).
Han, C., Mao, J., Gan, C., Tenenbaum, J. B. & Wu, J. Visual Concept-Metaconcept Learning. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 8745-visual-concept-metaconcept-learning.pdf (1.92 MB)