Publication

Found 158 results
Author [ Title(Desc)] Type Year
Filters: Author is Tomaso Poggio  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Liao, Q., Leibo, J. Z., Mroueh, Y. & Poggio, T. Can a biologically-plausible hierarchy effectively replace face detection, alignment, and recognition pipelines?. (2014).PDF icon CBMM-Memo-003.pdf (963.66 KB)
Villalobos, K. M. et al. Can Deep Neural Networks Do Image Segmentation by Understanding Insideness?. (2018).PDF icon CBMM-Memo-095.pdf (1.96 MB)
Poggio, T. & Magrini, M. Cervelli menti algoritmi. 272 (Sperling & Kupfer, 2023). at <https://www.sperling.it/libri/cervelli-menti-algoritmi-marco-magrini>
Liao, Q., Miranda, B., Hidary, J. & Poggio, T. Classical generalization bounds are surprisingly tight for Deep Networks. (2018).PDF icon CBMM-Memo-091.pdf (1.43 MB)PDF icon CBMM-Memo-091-v2.pdf (1.88 MB)
Mutch, J., Knoblich, U. & Poggio, T. CNS (“Cortical Network Simulator”): a GPU-based framework for simulating cortically-organized networks. (2010).File cns.tar (1.46 MB)PDF icon MIT-CSAIL-TR-2010-013.pdf (389.38 KB)File (last version before switch to classdef syntax)  (1.05 MB)
Poggio, T., Liao, Q. & Banburski, A. Complexity Control by Gradient Descent in Deep Networks. Nature Communications 11, (2020).PDF icon s41467-020-14663-9.pdf (431.68 KB)
Poggio, T. & Fraser, M. Compositional Sparsity of Learnable Functions. (2024).PDF icon This is an update of the AMS paper (230.72 KB)
Poggio, T. & Fraser, M. Compositional sparsity of learnable functions. Bulletin of the American Mathematical Society 61, 438-456 (2024).
Chandrasekhar, V. et al. Compression of Deep Neural Networks for Image Instance Retrieval. (2017). at <https://arxiv.org/abs/1701.04923>PDF icon 1701.04923.pdf (614.33 KB)
Poggio, T., Mutch, J. & Isik, L. Computational role of eccentricity dependent cortical magnification. (2014).PDF icon CBMM-Memo-017.pdf (1.04 MB)
Malkin, E., Deza, A. & Poggio, T. CUDA-Optimized real-time rendering of a Foveated Visual System. Shared Visual Representations in Human and Machine Intelligence (SVRHM) workshop at NeurIPS 2020 (2020). at <https://arxiv.org/abs/2012.08655>PDF icon Foveated_Drone_SVRHM_2020.pdf (13.44 MB)PDF icon v1 (12/15/2020) (14.7 MB)

Pages