Publication

Found 904 results
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Adhya, D. et al. Shared gene co-expression networks in autism from induced pluripotent stem cell (iPSC) neurons. BioRxiv (2018). doi:10.1101/349415
Adler, A. & Wax, M. Blind Constant Modulus Multiuser Detection via Low-Rank Approximation. IEEE Signal Processing Letters 1 - 1 (2019). doi:10.1109/LSP.9710.1109/LSP.2019.2918001
Adler, A., Araya-Polo, M. & Poggio, T. Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows. IEEE Signal Processing Magazine 38, 89 - 119 (2021).
Adler, A. & Wax, M. Constant Modulus Algorithms via Low-Rank Approximation. (2018).PDF icon CBMM-Memo-077.pdf (795.61 KB)
Adler, A. & Wax, M. Constant modulus algorithms via low-rank approximation. Signal Processing 160, 263 - 270 (2019).
Adler, A., Araya-Polo, M. & Poggio, T. Deep Recurrent Architectures for Seismic Tomography. 81st EAGE Conference and Exhibition 2019 (2019).
Adler, A. & Wax, M. Constant Modulus Beamforming Via Low-Rank Approximation. 2018 IEEE Statistical Signal Processing Workshop (SSP) (2018). doi:10.1109/SSP.2018.8450799
Adler, A. & Wax, M. Direct Localization by Partly Calibrated Arrays: A Relaxed Maximum Likelihood Solution. 27th European Signal Processing Conference, EUSIPCO 2019 (2019). at <http://eusipco2019.org/technical-program>
Adler, A., Wax, M. & Pantazis, D. Brain Signals Localization by Alternating Projections. arXiv (2019).PDF icon CBMM-Memo-099.pdf (421.67 KB)
Aghajan, Z. M., Kreiman, G. & Fried, I. Minute-scale periodicity of neuronal firing in the human entorhinal cortex. Cell Reports 42, 113271 (2023).PDF icon 1-s2.0-S2211124723012834-main.pdf (5.33 MB)
Alfano, P. Didier, Pastore, V. Paolo, Rosasco, L. & Odone, F. Top-tuning: A study on transfer learning for an efficient alternative to fine tuning for image classification with fast kernel methods. Image and Vision Computing 142, 104894 (2024).
Allen, K., Smith, K. A. & Tenenbaum, J. B. Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning. Proceedings of the National Academy of Sciences 201912341 (2020). doi:10.1073/pnas.1912341117PDF icon 1912341117.full_.pdf (2.15 MB)
Allen, K. et al. Meta-strategy learning in physical problem solving: the effect of embodied experience. bioRxiv (2021).PDF icon 2021.07.08.451333v2.full_.pdf (3.05 MB)
Allen, K., Yildirim, I. & Tenenbaum, J. B. Integrating Identification and Perception: A case study of familiar and unfamiliar face processing. Proceedings of the Thirty-Eight Annual Conference of the Cognitive Science Society (2016).PDF icon allen_5_13.pdf (2.13 MB)
Allen, K. R. et al. Lifelong learning of cognitive styles for physical problem-solving: The effect of embodied experienceAbstract. Psychonomic Bulletin & Review (2023). doi:10.3758/s13423-023-02400-4
Amir, N. et al. Abstracts of the 2014 Brains, Minds, and Machines Summer Course. (2014).PDF icon CBMM-Memo-024.pdf (2.86 MB)
Anselmi, F. & Poggio, T. Representation Learning in Sensory Cortex: a theory. (2014).PDF icon CBMM-Memo-026_neuron_ver45.pdf (1.35 MB)
Anselmi, F. et al. Unsupervised Learning of Invariant Representations in Hierarchical Architectures. (2013).PDF icon 1311.4158v2.pdf (3.78 MB)
Anselmi, F., Evangelopoulos, G., Rosasco, L. & Poggio, T. Symmetry Regularization. (2017).PDF icon CBMM-Memo-063.pdf (6.1 MB)
Anselmi, F., Rosasco, L., Tan, C. & Poggio, T. Deep Convolutional Networks are Hierarchical Kernel Machines. (2015).PDF icon CBMM Memo 035_rev5.pdf (975.65 KB)
Anselmi, F., Rosasco, L. & Poggio, T. On invariance and selectivity in representation learning. Information and Inference: A Journal of the IMA iaw009 (2016). doi:10.1093/imaiai/iaw009PDF icon imaiai.iaw009.full_.pdf (267.87 KB)
Anselmi, F. et al. Unsupervised learning of invariant representations with low sample complexity: the magic of sensory cortex or a new framework for machine learning?. (2014).PDF icon CBMM Memo No. 001 (940.36 KB)
Anselmi, F. et al. Unsupervised learning of invariant representations. Theoretical Computer Science (2015). doi:10.1016/j.tcs.2015.06.048
Anselmi, F., Rosasco, L. & Poggio, T. On Invariance and Selectivity in Representation Learning. (2015).PDF icon CBMM Memo No. 029 (812.07 KB)
Anselmi, F. & Poggio, T. Representation Learning in Sensory Cortex: a theory. IEEE Access 1 - 1 (2022). doi:10.1109/ACCESS.2022.3208603PDF icon Representation_Learning_in_Sensory_Cortex_a_theory.pdf (1.17 MB)

Pages