Export 115 results:
Filters: Author is Poggio, Tomaso  [Clear All Filters]
Xiao, W., Chen, H., Liao, Q. & Poggio, T. Biologically-plausible learning algorithms can scale to large datasets. International Conference on Learning Representations, (ICLR 2019) (2019).PDF icon gk7779.pdf (721.53 KB)
Adler, A., Araya-Polo, M. & Poggio, T. Deep Recurrent Architectures for Seismic Tomography. 81st EAGE Conference and Exhibition 2019 (2019).
Poggio, T., Kur, G. & Banburski, A. Double descent in the condition number. (2019).PDF icon Fixing typos, clarifying error in y, best approach is crossvalidation (837.18 KB)PDF icon Incorporated footnote in text plus other edits (854.05 KB)PDF icon Deleted previous discussion on kernel regression and deep nets: it will appear, extended, in a separate paper (795.28 KB)PDF icon RevisedPNASV2.pdf (261.24 KB)
Banburski, A. et al. Dynamics & Generalization in Deep Networks -Minimizing the Norm. NAS Sackler Colloquium on Science of Deep Learning (2019).
Han, Y., Roig, G., Geiger, G. & Poggio, T. Properties of invariant object recognition in human one-shot learning suggests a hierarchical architecture different from deep convolutional neural networks. Vision Science Society (2019).
Poggio, T., Banburski, A. & Liao, Q. Theoretical Issues in Deep Networks. (2019).PDF icon CBMM Memo 100 v1 (1.71 MB)PDF icon CBMM Memo 100 v3 (8/25/2019) (1.31 MB)PDF icon CBMM Memo 100 v4 (11/19/2019) (1008.23 KB)
Liao, Q., Banburski, A. & Poggio, T. Theories of Deep Learning: Approximation, Optimization and Generalization . TECHCON 2019 (2019).
Banburski, A. et al. Weight and Batch Normalization implement Classical Generalization Bounds . ICML (2019).