Publication

Export 64 results:
Filters: Author is Kreiman, Gabriel  [Clear All Filters]
2021
Kreiman, G. Biological and Computer Vision. (Cambridge University Press, 2021). doi:10.1017/9781108649995
2020
Kreiman, G. & Serre, T. Beyond the feedforward sweep: feedback computations in the visual cortex. Annals of the New York Academy of Sciences 1464, 222 - 241 (2020).
Kreiman, G. & Serre, T. Beyond the feedforward sweep: feedback computations in the visual cortex. Ann. N.Y. Acad. Sci. | Special Issue: The Year in Cognitive Neuroscience 1464, 222-241 (2020).PDF icon gk7812.pdf (1.93 MB)
Jacquot, V., Ying, J. & Kreiman, G. Can Deep Learning Recognize Subtle Human Activities?. CVPR 2020 (2020).
Vinken, K., Boix, X. & Kreiman, G. Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception. Science Advances 6, eabd4205 (2020).PDF icon gk7967.pdf (3.07 MB)
Ben-Yosef, G., Kreiman, G. & Ullman, S. Minimal videos: Trade-off between spatial and temporal information in human and machine vision. Cognition (2020). doi:10.1016/j.cognition.2020.104263
Lotter, W., Kreiman, G. & Cox, D. A neural network trained for prediction mimics diverse features of biological neurons and perception. Nature Machine Intelligence 2, 210 - 219 (2020).
Lotter, W., Kreiman, G. & Cox, D. A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception. Nature Machine Learning (2020).PDF icon 1805.10734.pdf (9.59 MB)
Zhang, M., Tseng, C. & Kreiman, G. Putting visual object recognition in context. CVPR 2020 (2020).PDF icon gk7876.pdf (3.12 MB)
Ben-Yosef, G., Kreiman, G. & Ullman, S. What can human minimal videos tell us about dynamic recognition models?. International Conference on Learning Representations (ICLR 2020) (2020). at <https://baicsworkshop.github.io/pdf/BAICS_1.pdf>PDF icon Authors' final version (516.09 KB)
Xiao, W. & Kreiman, G. XDream: Finding preferred stimuli for visual neurons using generative networks and gradient-free optimization. PLOS Computational Biology 16, e1007973 (2020).PDF icon gk7791.pdf (2.39 MB)
2018
Palepu, A. & Kreiman, G. Development of automated interictal spike detector. 40th International Conference of the IEEE Engineering in Medicine and Biology Society - EMBC 2018 (2018). at <https://embc.embs.org/2018/>
Zhang, M. et al. Finding any Waldo with zero-shot invariant and efficient visual search. Nature Communications 9, (2018).
Wu, K., Wu, E. & Kreiman, G. Learning Scene Gist with Convolutional Neural Networks to Improve Object Recognition. arXiv | Cornell University arXiv:1803.01967, (2018).
Misra, P., Marconi, A., Peterson, M. F. & Kreiman, G. Minimal memory for details in real life events. Scientific Reports 8, (2018).
Madhavan, R. et al. Neural Interactions Underlying Visuomotor Associations in the Human Brain. Cerebral Cortex 1–17, (2018).
Lotter, W., Kreiman, G. & Cox, D. A neural network trained to predict future videoframes mimics critical properties of biologicalneuronal responses and perception. ( arXiv | Cornell University, 2018). at <https://arxiv.org/pdf/1805.10734.pdf>PDF icon 1805.10734.pdf (9.59 MB)
Tang, H. et al. Recurrent computations for visual pattern completion. Proceedings of the National Academy of Sciences (2018). doi:10.1073/pnas.1719397115PDF icon 1719397115.full_.pdf (1.1 MB)
Ben-Yosef, G., Kreiman, G. & Ullman, S. Spatiotemporal interpretation features in the recognition of dynamic images. (2018).PDF icon CBMM-Memo-094.pdf (1.21 MB)Package icon CBMM-Memo-094-dynamic-figures.zip (1.8 MB)File fig1.ppsx (147.67 KB)File fig2.ppsx (419.72 KB)File fig4.ppsx (673.41 KB)File figS1.ppsx (587.88 KB)File figS2.ppsx (281.56 KB)
Isik, L. et al. What is changing when: decoding visual information in movies from human intracranial recordings. NeuroImage 180, Part A, 147-159 (2018).PDF icon Human neurophysiological responses during movies (2.78 MB)

Pages