Export 148 results:
Filters: Author is Tomaso A. Poggio  [Clear All Filters]
Poggio, T. & Magrini, M. Cervelli menti algoritmi. 272 (Sperling & Kupfer, 2023). at <>
Rangamani, A., Lindegaard, M., Galanti, T. & Poggio, T. Feature learning in deep classifiers through Intermediate Neural Collapse. (2023).PDF icon Feature_Learning_memo.pdf (2.16 MB)
Gan, Y. & Poggio, T. A. A Homogeneous Transformer Architecture. (2023).PDF icon CBMM-Memo-143.pdf (1.07 MB)
Singhal, U. et al. How to Guess a Gradient. arXiv (2023). at <>
Xu, M. et al. The Janus effects of SGD vs GD: high noise and low rank. (2023).PDF icon Updated with appendix showing empirically that the main results extend to deep nonlinear networks (2.95 MB)PDF icon Small updates...typos... (616.82 KB)
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-Based Generalization Bounds for Compositionally Sparse Neural Networks. (2023).PDF icon Norm-based bounds for convnets.pdf (1.2 MB)
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-based Generalization Bounds for Sparse Neural Networks. NeurIPS 2023 (2023). at <>PDF icon NeurIPS-2023-norm-based-generalization-bounds-for-sparse-neural-networks-Paper-Conference.pdf (577.69 KB)
Galanti, T., Siegel, Z., Gupte, A. & Poggio, T. SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks. (2023).PDF icon Low-rank bias.pdf (2.38 MB)
Han, Y., Poggio, T. A. & Cheung, B. System Identification of Neural Systems: If We Got It Right, Would We Know?. Proceedings of the 40th International Conference on Machine Learning, PMLR 202, 12430-12444 (2023).PDF icon han23d.pdf (797.48 KB)