Publication

Export 118 results:
Filters: Author is Tomaso A. Poggio  [Clear All Filters]
2020
Reddy, M. Vuyyuru, Banburski, A., Pant, N. & Poggio, T. Biologically Inspired Mechanisms for Adversarial Robustness. (2020).PDF icon CBMM_Memo_110.pdf (3.14 MB)
Poggio, T. A., Liao, Q. & Banburski, A. Complexity Control by Gradient Descent in Deep Networks. Nature Communications 11, (2020).PDF icon s41467-020-14663-9.pdf (431.68 KB)
Malkin, E., Deza, A. & Poggio, T. A. CUDA-Optimized real-time rendering of a Foveated Visual System. Shared Visual Representations in Human and Machine Intelligence (SVRHM) workshop at NeurIPS 2020 (2020). at <https://arxiv.org/abs/2012.08655>PDF icon Foveated_Drone_SVRHM_2020.pdf (13.44 MB)PDF icon v1 (12/15/2020) (14.7 MB)
Banburski, A. et al. Dreaming with ARC. Learning Meets Combinatorial Algorithms workshop at NeurIPS 2020 (2020).PDF icon CBMM Memo 113.pdf (1019.64 KB)
Rangamani, A., Rosasco, L. & Poggio, T. For interpolating kernel machines, the minimum norm ERM solution is the most stable. (2020).PDF icon CBMM_Memo_108.pdf (1015.14 KB)PDF icon Better bound (without inequalities!) (1.03 MB)
Deza, A., Liao, Q., Banburski, A. & Poggio, T. Hierarchically Local Tasks and Deep Convolutional Networks. (2020).PDF icon CBMM_Memo_109.pdf (2.12 MB)
Poggio, T. A. & Liao, Q. Implicit dynamic regularization in deep networks. (2020).PDF icon TPR_ver2.pdf (2.29 MB)PDF icon Substantial edits (1.52 MB)PDF icon Edits that are extensive but minor in content (1.98 MB)PDF icon Extending theory, setting a post (2 MB)PDF icon Fine tuning (2.01 MB)PDF icon Corrections in Appendix about Neural Collapse (2.01 MB)PDF icon Small edits clarifying role of weight decay (2.39 MB)PDF icon Added: prove NC for multiclass+theorem on connected global minima (2.4 MB)
Poggio, T. A. & Cooper, Y. Loss landscape: SGD has a better view. (2020).PDF icon CBMM-Memo-107.pdf (1.03 MB)PDF icon Typos and small edits, ver11 (955.08 KB)PDF icon Small edits, corrected Hessian for spurious case (337.19 KB)
Poggio, T. A. Stable Foundations for Learning: a framework for learning theory (in both the classical and modern regime). (2020).PDF icon Original file (584.54 KB)PDF icon Corrected typos and details of "equivalence" CV stability and expected error for interpolating machines. Added Appendix on SGD.  (905.29 KB)PDF icon Edited Appendix on SGD. (909.19 KB)PDF icon Deleted Appendix. Corrected typos etc (880.27 KB)PDF icon Added result about square loss and min norm (898.03 KB)
2019
Xiao, W., Chen, H., Liao, Q. & Poggio, T. Biologically-plausible learning algorithms can scale to large datasets. International Conference on Learning Representations, (ICLR 2019) (2019).PDF icon gk7779.pdf (721.53 KB)
Adler, A., Araya-Polo, M. & Poggio, T. Deep Recurrent Architectures for Seismic Tomography. 81st EAGE Conference and Exhibition 2019 (2019).
Poggio, T., Kur, G. & Banburski, A. Double descent in the condition number. (2019).PDF icon Fixing typos, clarifying error in y, best approach is crossvalidation (837.18 KB)PDF icon Incorporated footnote in text plus other edits (854.05 KB)PDF icon Deleted previous discussion on kernel regression and deep nets: it will appear, extended, in a separate paper (795.28 KB)PDF icon RevisedPNASV2.pdf (261.24 KB)
Banburski, A. et al. Dynamics & Generalization in Deep Networks -Minimizing the Norm. NAS Sackler Colloquium on Science of Deep Learning (2019).
Han, Y., Roig, G., Geiger, G. & Poggio, T. Properties of invariant object recognition in human one-shot learning suggests a hierarchical architecture different from deep convolutional neural networks. Vision Science Society (2019).
Poggio, T., Banburski, A. & Liao, Q. Theoretical Issues in Deep Networks. (2019).PDF icon CBMM Memo 100 v1 (1.71 MB)PDF icon CBMM Memo 100 v3 (8/25/2019) (1.31 MB)PDF icon CBMM Memo 100 v4 (11/19/2019) (1008.23 KB)
Liao, Q., Banburski, A. & Poggio, T. Theories of Deep Learning: Approximation, Optimization and Generalization . TECHCON 2019 (2019).
Banburski, A. et al. Weight and Batch Normalization implement Classical Generalization Bounds . ICML (2019).

Pages