Publication

Export 793 results:
2022
Houlihan, S. D., Ong, D., Cusimano, M. & Saxe, R. Reasoning about the antecedents of emotions: Bayesian causal inference over an intuitive theory of mind. Proceedings of the 44th Annual Conference of the Cognitive Science Society 44, 854-861 (2022).PDF icon Houlihan 2022 Proceedings of the 44th Annual Conference of the Cognitive Science Society.pdf (687.98 KB)
Anselmi, F. & Poggio, T. Representation Learning in Sensory Cortex: a theory. IEEE Access 1 - 1 (2022). doi:10.1109/ACCESS.2022.3208603PDF icon Representation_Learning_in_Sensory_Cortex_a_theory.pdf (1.17 MB)
Galanti, T. & Poggio, T. SGD Noise and Implicit Low-Rank Bias in Deep Neural Networks. (2022).PDF icon Implicit Rank Regularization.pdf (1.42 MB)
Shaham, N., Chandra, J., Kreiman, G. & Sompolinsky, H. Stochastic consolidation of lifelong memoryAbstract. Scientific Reports 12, (2022).PDF icon s41598-022-16407-9.pdf (2.54 MB)
Ellis, K., Albright, A., Solar-Lezama, A., Tenenbaum, J. B. & O’Donnell, T. J. Synthesizing theories of human language with Bayesian program inductionAbstract. Nature Communications 13, (2022).PDF icon s41467-022-32012-w.pdf (2.19 MB)
Han, Y., Poggio, T. & Cheung, B. System identification of neural systems: If we got it right, would we know?. (2022).PDF icon CBMM-Memo-136.pdf (1.75 MB)
Xiao, Y. et al. Task-specific neural processes underlying conflict resolution during cognitive control. BioRxiv (2022). doi:10.1101/2022.01.16.476535 PDF icon 2022.01.16.476535v1.full_.pdf (22.96 MB)
Sakai, A. et al. Three approaches to facilitate DNN generalization to objects in out-of-distribution orientations and illuminations. (2022).PDF icon CBMM-Memo-119.pdf (31.08 MB)
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. (2022).PDF icon CBMM-Memo-132.pdf (1.15 MB)
Yamada, M., D'Amario, V., Takemoto, K., Boix, X. & Sasaki, T. Transformer Module Networks for Systematic Generalization in Visual Question Answering. (2022).PDF icon CBMM-Memo-121.pdf (1.06 MB)
Rangamani, A. & Xie, Y. Understanding the Role of Recurrent Connections in Assembly Calculus. (2022).PDF icon CBMM-Memo-137.pdf (1.49 MB)
Kamps, F. S., Richardson, H., N. Murty, A. Ratan, Kanwisher, N. & Saxe, R. Using child‐friendly movie stimuli to study the development of face, place, and object regions from age 3 to 12 years. Human Brain Mapping (2022). doi:10.1002/hbm.25815
Madan, S. et al. When and how convolutional neural networks generalize to out-of-distribution category–viewpoint combinations. Nature Machine Intelligence 4, 146 - 153 (2022).
2021
Shu, T. et al. AGENT: A Benchmark for Core Psychological Reasoning. Proceedings of the 38th International Conference on Machine Learning (2021).
Zhang, M. & Kreiman, G. Beauty is in the eye of the machine. Nature Human Behaviour 5, 675 - 676 (2021).
Kreiman, G. Biological and Computer Vision. (Cambridge University Press, 2021). doi:10.1017/9781108649995
Traer, J., Norman-Haignere, S. & McDermott, J. H. Causal inference in environmental sound recognition. Cognition (2021). doi:10.1016/j.cognition.2021.104627
Cohen, M. A., Ostrand, C., Frontero, N. & Pham, P. - N. Characterizing a snapshot of perceptual experience. Journal of Experimental Psychology: General (2021). doi:10.1037/xge0000864
Kar, K., Schrimpf, M., Schmidt, K. & DiCarlo, J. J. Chemogenetic suppression of macaque V4 neurons produces retinotopically specific deficits in downstream IT neural activity patterns and core object recognition behavior. Journal of Vision 21, (2021).
Zheng, J. et al. Cognitive boundary signals in the human medial temporal lobe shape episodic memory representation. bioRxiv (2021).
Baidya, A., Dapello, J., DiCarlo, J. J. & Marques, T. Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs. NeurIPS 2021 (2021). at <https://nips.cc/Conferences/2021/ScheduleMultitrack?event=41268>
Hu, J., Zaslavsky, N. & Levy, R. Competition from novel features drives scalar inferences in reference games. Proceedings of the Annual Meeting of the Cognitive Science Society 43, (2021).
Kuo, Y. - L., Katz, B. & Barbu, A. Compositional Networks Enable Systematic Generalization for Grounded Language Understanding. (2021).PDF icon CBMM-Memo-129.pdf (1.2 MB)
Kuo, Y. - L., Barbu, A. & Katz, B. Compositional RL Agents That Follow Language Commands in Temporal Logic. (2021).PDF icon CBMM-Memo-127.pdf (2.12 MB)
Kuo, Y. - L., Katz, B. & Barbu, A. Compositional RL Agents That Follow Language Commands in Temporal Logic. Frontiers in Robotics and AI 8, (2021).PDF icon frobt-08-689550.pdf (1.57 MB)

Pages