Export 569 results:
Kar, K., Kubilius, J., Schmidt, K., Issa, E. B. & DiCarlo, J. J. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience (2019). doi:10.1038/s41593-019-0392-5PDF icon Author's last draft (1.74 MB)
Ponce, C. R. et al. Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences. Cell 177, 1009 (2019).PDF icon Author's last draft (20.26 MB)
Araya-Polo, M., Adler, A., Farris, S. & Jennings, J. Deep Learning: Algorithms and Applications (SPRINGER-VERLAG, 2019).
Serrino, J., Kleiman-Weiner, M., Parkes, D. C. & Tenenabum, J. B. Finding Friend and Foe in Multi-Agent Games. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon Max KW paper.pdf (928.96 KB)
Sanders, H., Wilson, M. A. & Gershman, S. J. Hippocampal Remapping as Hidden State Inference. (2019). doi: icon CBMM-Memo-101.pdf (12.78 MB)
Leonard, J. A., Garcia, A. & Schulz, L. E. How Adults’ Actions, Outcomes, and Testimony Affect Preschoolers’ Persistence. Child Development (2019). doi:10.1111/cdev.13305
Idiart, M. A. P., Villavicencio, A., Katz, B., Rennó-Costa, C. & Lisman, J. How Does the Brain Represents Language and Answers Questions? Using an AI System to Understand the Underlying Neurobiological Mechanisms. Frontiers in Computational Neuroscience 13, (2019).
Dobs, K., Isik, L., Pantazis, D. & Kanwisher, N. How face perception unfolds over time. Nature Communications 10, (2019).
Gershman, S. J. How to never be wrong. Psychonomic Bulletin & Review 26, 13 - 28 (2019).
Pagliana, N. & Rosasco, L. Implicit Regularization of Accelerated Methods in Hilbert Spaces. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9591-implicit-regularization-of-accelerated-methods-in-hilbert-spaces.pdf (451.14 KB)
Patzelt, E. H., Kool, W., Millner, A. J. & Gershman, S. J. Incentives Boost Model-Based Control Across a Range of Severity on Several Psychiatric Constructs. Biological Psychiatry 85, 425 - 433 (2019).
Yildirim, I., Wu, J., Kanwisher, N. & Tenenbaum, J. B. An integrative computational architecture for object-driven cortex. Current Opinion in Neurobiology 55, 73 - 81 (2019).
Calero, C. I., Shalom, D. E., Spelke, E. S. & Sigman, M. Language, gesture, and judgment: Children’s paths to abstract geometry. Journal of Experimental Child Psychology 177, 70 - 85 (2019).
Jozwik, K. M., Lee, M., Marques, T., Schrimpf, M. & Bashivan, P. Large-scale hyperparameter search for predicting human brain responses in the Algonauts challenge. The Algonauts Project: Explaining the Human Visual Brain Workshop 2019 (2019). doi:10.1101/689844
Feather, J., Durango, A., Gonzalez, R. & McDermott, J. H. Metamers of neural networks reveal divergence from human perceptual systems. NIPS 2019 (2019). at <>PDF icon Feather_etal_2019_NeurIPS_metamers.pdf (4.7 MB)
Srivastava, S., Ben-Yosef, G. & Boix, X. Minimal images in deep neural networks: Fragile Object Recognition in Natural Images. International Conference on Learning Representations (ICLR) (2019). at <>
Ullman, S., Dorfman, N. & Harari, D. A model for discovering ‘containment’ relations. Cognition 183, 67 - 81 (2019).
Smith, K. A. et al. Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (2019). at <http: //>PDF icon ADEPT_NeurIPS.pdf (11.07 MB)
Bashivan, P., Kar, K. & DiCarlo, J. J. Neural Population Control via Deep Image Synthesis. Science 364, (2019).PDF icon Author's last draft (18.45 MB)
Barbu, A. et al. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9142-objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.pdf (16.31 MB)
Liu, S., Brooks, N. B. & Spelke, E. S. Origins of the concepts cause, cost, and goal in prereaching infants. PNAS (2019). doi: icon Author's last draft (2.58 MB)
Fazeli, N. et al. See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion. Science Robotics 4, eaav3123 (2019).
Isik, L., Mynick, A., Pantazis, D. & Kanwisher, N. The speed of human social interaction perception. BioRxiv (2019). doi:
Poggio, T., Banburski, A. & Liao, Q. Theoretical Issues in Deep Networks. (2019).PDF icon CBMM Memo 100 v1 (1.71 MB)PDF icon CBMM Memo 100 v3 (8/25/2019) (1.31 MB)PDF icon CBMM Memo 100 v4 (11/19/2019) (1008.23 KB)
Jozwik, K. M., Schrimpf, M., Kanwisher, N. & DiCarlo, J. J. To find better neural network models of human vision, find better neural network models of primate vision. BioRxiv (2019). at <>