Publication

Found 158 results
Author [ Title(Desc)] Type Year
Filters: Author is Tomaso Poggio  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Mhaskar, H. & Poggio, T. Deep vs. shallow networks : An approximation theory perspective. (2016).PDF icon Original submission, visit the link above for the updated version (960.27 KB)
Mhaskar, H. & Poggio, T. Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications 14, 829 - 848 (2016).
Zhang, C., Voinea, S., Evangelopoulos, G., Rosasco, L. & Poggio, T. Discriminative Template Learning in Group-Convolutional Networks for Invariant Speech Representations. INTERSPEECH-2015 (International Speech Communication Association (ISCA), 2015). at <http://www.isca-speech.org/archive/interspeech_2015/i15_3229.html>
Banburski, A., De La Torre, F., Pant, N., Shastri, I. & Poggio, T. Distribution of Classification Margins: Are All Data Equal?. (2021).PDF icon CBMM Memo 115.pdf (9.56 MB)PDF icon arXiv version (23.05 MB)
Volokitin, A., Roig, G. & Poggio, T. Do Deep Neural Networks Suffer from Crowding?. (2017).PDF icon CBMM-Memo-069.pdf (6.47 MB)
Poggio, T., Kur, G. & Banburski, A. Double descent in the condition number. (2019).PDF icon Fixing typos, clarifying error in y, best approach is crossvalidation (837.18 KB)PDF icon Incorporated footnote in text plus other edits (854.05 KB)PDF icon Deleted previous discussion on kernel regression and deep nets: it will appear, extended, in a separate paper (795.28 KB)PDF icon correcting a bad typo (261.24 KB)PDF icon Deleted plot of condition number of kernel matrix: we cannot get a double descent curve  (769.32 KB)
Banburski, A. et al. Dreaming with ARC. Learning Meets Combinatorial Algorithms workshop at NeurIPS 2020 (2020).PDF icon CBMM Memo 113.pdf (1019.64 KB)
Xu, M. et al. Dynamics and Neural Collapse in Deep Classifiers trained with the Square Loss. (2021).PDF icon v1.0 (4.61 MB)PDF icon v1.4corrections to generalization section (5.85 MB)PDF icon v1.7Small edits (22.65 MB)
Banburski, A. et al. Dynamics & Generalization in Deep Networks -Minimizing the Norm. NAS Sackler Colloquium on Science of Deep Learning (2019).
Xu, M., Rangamani, A., Liao, Q., Galanti, T. & Poggio, T. Dynamics in Deep Classifiers trained with the Square Loss: normalization, low rank, neural collapse and generalization bounds. Research (2023). doi:10.34133/research.0024PDF icon research.0024.pdf (4.05 MB)
Isik, L., Meyers, E., Leibo, J. Z. & Poggio, T. The dynamics of invariant object recognition in the human visual system. J Neurophysiol 111, 91-102 (2014).
Isik, L., Meyers, E., Leibo, J. Z. & Poggio, T. The dynamics of invariant object recognition in the human visual system. (2014). doi:http://dx.doi.org/10.7910/DVN/KRUPXZ

Pages