Publication

Export 69 results:
Filters: Author is Joshua B. Tenenabum  [Clear All Filters]
2017
Zhang, Z. et al. Generative modeling of audible shapes for object perception. The IEEE International Conference on Computer Vision (ICCV) (2017). at <http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Generative_Modeling_of_ICCV_2017_paper.html>
Tsividis, P., Pouncy, T., Xu, J. L., Tenenbaum, J. B. & Gershman, S. J. Human Learning in Atari. AAAI Spring Symposium Series (2017).PDF icon Tsividis et al - Human Learning in Atari.pdf (844.47 KB)
Wu, J., Lu, E., Kohli, P., Freeman, W. T. & Tenenbaum, J. B. Learning to See Physics via Visual De-animation. Advances in Neural Information Processing Systems 30 152–163 (2017). at <http://papers.nips.cc/paper/6620-learning-to-see-physics-via-visual-de-animation.pdf>PDF icon Learning to See Physics via Visual De-animation (1.11 MB)
Wu, J. et al. MarrNet: 3D Shape Reconstruction via 2.5D Sketches. Advances in Neural Information Processing Systems 30 540–550 (2017). at <http://papers.nips.cc/paper/6657-marrnet-3d-shape-reconstruction-via-25d-sketches.pdf>PDF icon MarrNet: 3D Shape Reconstruction via 2.5D Sketches (6.25 MB)
Ullman, T. D., Spelke, E. S., Battaglia, P. & Tenenbaum, J. B. Mind Games: Game Engines as an Architecture for Intuitive Physics. Trends in Cognitive Science 21, 649 - 665 (2017).PDF icon Preprint submitted to Trends in Cognitive Science (17.64 MB)
Yildirim, I., Gerstenberg, T., Saeed, B., Toussant, M. & Tenenbaum, J. B. Physical problem solving: Joint planning with symbolic, geometric, and dynamic constraints. Proceedings of the 39th Annual Conference of the Cognitive Science Society (2017).PDF icon Physical problem solving Joint planning with symbolic, geometric, and dynamic constraints, Yildirim et al., 2017.pdf (2.46 MB)
Baker, C., Jara-Ettinger, J., Saxe, R. & Tenenbaum, J. B. Rational quantitative attribution of beliefs, desires, and percepts in human mentalizing. Nature Human Behavior 1, (2017).PDF icon article.pdf (2.17 MB)
Janner, M., Wu, J., Kulkarni, T., Yildirim, I. & Tenenbaum, J. B. Self-supervised intrinsic image decomposition. Annual Conference on Neural Information Processing Systems (NIPS) (2017). at <https://papers.nips.cc/paper/7175-self-supervised-intrinsic-image-decomposition>PDF icon intrinsicImg_nips_2017.pdf (5.87 MB)
zhang, zhoutong et al. Shape and Material from Sound. Advances in Neural Information Processing Systems 30 1278–1288 (2017). at <http://papers.nips.cc/paper/6727-shape-and-material-from-sound.pdf>
Soltani, A. Arsalan, Huang, H., Wu, J., Kulkarni, T. & Tenenbaum, J. B. Synthesizing 3D Shapes via Modeling Multi-view Depth Maps and Silhouettes with Deep Generative Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). doi:10.1109/CVPR.2017.269PDF icon Synthesizing 3D Shapes via Modeling Multi-View Depth Maps and Silhouettes with Deep Generative Networks.pdf (2.86 MB)
Liu, S., Ullman, T. D., Tenenbaum, J. B. & Spelke, E. S. Ten-month-old infants infer the value of goals from the costs of actions. Science 358, 1038-1041 (2017).PDF icon ivc_full_preprint_withsm.pdf (1.6 MB)
Liu, S., Ullman, T., Tenenbaum, J. B. & Spelke, E. S. Ten-month-old infants infer value from effort. Society for Research in Child Development (2017).
Liu, S., Ullman, T., Tenenbaum, J. B. & Spelke, E. S. Ten-month-old infants infer value from effort. SRCD (2017).
2016
Lake, B. M., Ullman, T., Tenenbaum, J. B. & Gershman, S. J. Building machines that learn and think like people. (2016).PDF icon machines_that_think.pdf (3.45 MB)
Kleiman-Weiner, M., Ho, M. K., Austerweil, J. L., L, L. Michael & Tenenbaum, J. B. Coordinate to cooperate or compete: abstract goals and joint intentions in social interaction. Proceedings of the 38th Annual Conference of the Cognitive Science Society (2016).PDF icon kleiman2016coordinate.pdf (266.87 KB)
Ullman, T., Tenenbaum, J. B. & Spelke, E. S. Effort as a bridging concept across action and action understanding: Weight and Physical Effort in Predictions of Efficiency in Other Agents. International Conference on Infant Studies (ICIS) (2016).
Fischer, J., Mikhael, J. G., Tenenbaum, J. B. & Kanwisher, N. Functional neuroanatomy of intuitive physical inference. Proceedings of the National Academy of Sciences 113, E5072 - E5081 (2016).
Allen, K., Yildirim, I. & Tenenbaum, J. B. Integrating Identification and Perception: A case study of familiar and unfamiliar face processing. Proceedings of the Thirty-Eight Annual Conference of the Cognitive Science Society (2016).PDF icon allen_5_13.pdf (2.13 MB)
Gerstenberg, T. & Tenenbaum, J. B. Oxford Handbook of Causal Reasoning (Oxford University Press, 2016).PDF icon Intuitive Theories (Gerstenberg, Tenenbaum, 2016.pdf (6.06 MB)
Harari, D., Gao, T., Kanwisher, N., Tenenbaum, J. B. & Ullman, S. Measuring and modeling the perception of natural and unconstrained gaze in humans and machines. (2016).PDF icon CBMM-Memo-059.pdf (1.71 MB)
Krafft, P., Baker, C., Pentland, A. & Tenenbaum, J. B. Modeling Human Ad Hoc Coordination. AAAI (2016).PDF icon krafft_aaai2016.pdf (247.58 KB)
Nakahashi, R., Baker, C. & Tenenbaum, J. B. Modeling human understanding of complex intentional action with a Bayesian nonparametric subgoal model. AAAI (2016).PDF icon nakahashi_aaai2016.pdf (1.74 MB)
Jara-Ettinger, J., Gweon, H., Schulz, L. & Tenenbaum, J. B. The naive utility calculus: computational principles underlying social cognition. Trends Cogn Sci. (2016). doi:10.1016/j.tics.2016.05.011
Bramley, N., Gerstenberg, T. & Tenenbaum, J. B. Natural science: Active learning in dynamic physical microworlds. 38th Annual Meeting of the Cognitive Science Society (2016).PDF icon Natural Science (Bramley, Gerstenberg, Tenenbaum, 2016).pdf (5.39 MB)
Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink, M. & Gershman, S. J. Probing the compositionality of intuitive functions. (2016).PDF icon CBMM-Memo-048.pdf (815.72 KB)

Pages