Publication

Export 585 results:
2019
Adler, A. & Wax, M. Blind Constant Modulus Multiuser Detection via Low-Rank Approximation. IEEE Signal Processing Letters 1 - 1 (2019). doi:10.1109/LSP.9710.1109/LSP.2019.2918001
Adler, A., Wax, M. & Pantazis, D. Brain Signals Localization by Alternating Projections. arXiv (2019).PDF icon CBMM-Memo-099.pdf (421.67 KB)
Kubilius, J. et al. Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 2019-10-28 NeurIPS-camera_ready.pdf (1.88 MB)
Adler, A. & Wax, M. Constant modulus algorithms via low-rank approximation. Signal Processing 160, 263 - 270 (2019).
Lewis, O. & Hermann, K. Data for free: Fewer-shot algorithm learning with parametricity data augmentation. ICLR 2019 (2019).
Kell, A. J. E. & McDermott, J. H. Deep neural network models of sensory systems: windows onto the role of task constraints. Current Opinion in Neurobiology 55, 121 - 132 (2019).
Adler, A., Araya-Polo, M. & Poggio, T. Deep Recurrent Architectures for Seismic Tomography. 81st EAGE Conference and Exhibition 2019 (2019).
Adler, A. & Wax, M. Direct Localization by Partly Calibrated Arrays: A Relaxed Maximum Likelihood Solution. 27th European Signal Processing Conference, EUSIPCO 2019 (2019). at <http://eusipco2019.org/technical-program>
Norman-Haignere, S. V., Kanwisher, N., McDermott, J. H. & Conway, B. R. Divergence in the functional organization of human and macaque auditory cortex revealed by fMRI responses to harmonic tones. Nature Neuroscience (2019). doi:10.1038/s41593-019-0410-7
Poggio, T., Kur, G. & Banburski, A. Double descent in the condition number. (2019).PDF icon Fixing typos, clarifying error in y, best approach is crossvalidation (837.18 KB)PDF icon Edits, adding bound for test error, stability (845.63 KB)PDF icon Added words and a footnote (887.9 KB)PDF icon Incorporated footnote in text plus other edits (854.05 KB)PDF icon Deleted previous discussion on kernel regression and deep nets: it will appear, extended, in a separate paper (795.28 KB)
Ullman, T. D. et al. Draping an Elephant: Uncovering Children's Reasoning About Cloth-Covered Objects. Cognitive Science Society (2019). at <https://mindmodeling.org/cogsci2019/papers/0506/index.html>PDF icon Draping an Elephant: Uncovering Children's Reasoning About Cloth-Covered Objects.pdf (2.62 MB)
Kar, K., Kubilius, J., Schmidt, K., Issa, E. B. & DiCarlo, J. J. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience (2019). doi:10.1038/s41593-019-0392-5PDF icon Author's last draft (1.74 MB)
Ponce, C. R. et al. Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences. Cell 177, 1009 (2019).PDF icon Author's last draft (20.26 MB)
Araya-Polo, M., Adler, A., Farris, S. & Jennings, J. Deep Learning: Algorithms and Applications (SPRINGER-VERLAG, 2019).
Serrino, J., Kleiman-Weiner, M., Parkes, D. C. & Tenenabum, J. B. Finding Friend and Foe in Multi-Agent Games. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon Max KW paper.pdf (928.96 KB)
Liu, S., Cushman, F. A., Gershman, S. J., Kool, W. & Spelke, E. S. Hard choices: Children’s understanding of the cost of action selection. . Cognitive Science Society (2019).PDF icon phk_cogsci_2019_final.pdf (276.14 KB)
Sanders, H., Wilson, M. A. & Gershman, S. J. Hippocampal Remapping as Hidden State Inference. (2019). doi:https://doi.org/10.1101/743260PDF icon CBMM-Memo-101.pdf (12.78 MB)
Leonard, J. A., Garcia, A. & Schulz, L. E. How Adults’ Actions, Outcomes, and Testimony Affect Preschoolers’ Persistence. Child Development (2019). doi:10.1111/cdev.13305
Idiart, M. A. P., Villavicencio, A., Katz, B., Rennó-Costa, C. & Lisman, J. How Does the Brain Represents Language and Answers Questions? Using an AI System to Understand the Underlying Neurobiological Mechanisms. Frontiers in Computational Neuroscience 13, (2019).
Dobs, K., Isik, L., Pantazis, D. & Kanwisher, N. How face perception unfolds over time. Nature Communications 10, (2019).
Gershman, S. J. How to never be wrong. Psychonomic Bulletin & Review 26, 13 - 28 (2019).
Pagliana, N. & Rosasco, L. Implicit Regularization of Accelerated Methods in Hilbert Spaces. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9591-implicit-regularization-of-accelerated-methods-in-hilbert-spaces.pdf (451.14 KB)
Patzelt, E. H., Kool, W., Millner, A. J. & Gershman, S. J. Incentives Boost Model-Based Control Across a Range of Severity on Several Psychiatric Constructs. Biological Psychiatry 85, 425 - 433 (2019).
Yildirim, I., Wu, J., Kanwisher, N. & Tenenbaum, J. B. An integrative computational architecture for object-driven cortex. Current Opinion in Neurobiology 55, 73 - 81 (2019).
Calero, C. I., Shalom, D. E., Spelke, E. S. & Sigman, M. Language, gesture, and judgment: Children’s paths to abstract geometry. Journal of Experimental Child Psychology 177, 70 - 85 (2019).

Pages