Export 706 results:
Udrescu, S. - M. et al. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020).PDF icon 2006.10782.pdf (2.62 MB)
Mhaskar, H. & Poggio, T. An analysis of training and generalization errors in shallow and deep networks. Neural Networks 121, 229 - 241 (2020).
Dasgupta, I., Guo, D., Gershman, S. J. & Goodman, N. D. Analyzing Machine‐Learned Representations: A Natural Language Case Study. Cognitive Science 44, (2020).
Ullman, T. D. & Tenenbaum, J. B. Bayesian Models of Conceptual Development: Learning as Building Models of the World. Annual Review of Developmental Psychology 2, 533 - 558 (2020).
Kreiman, G. & Serre, T. Beyond the feedforward sweep: feedback computations in the visual cortex. Ann. N.Y. Acad. Sci. | Special Issue: The Year in Cognitive Neuroscience 1464, 222-241 (2020).PDF icon gk7812.pdf (1.93 MB)
Kreiman, G. & Serre, T. Beyond the feedforward sweep: feedback computations in the visual cortex. Annals of the New York Academy of Sciences 1464, 222 - 241 (2020).
Reddy, M. Vuyyuru, Banburski, A., Pant, N. & Poggio, T. Biologically Inspired Mechanisms for Adversarial Robustness. (2020).PDF icon CBMM_Memo_110.pdf (3.14 MB)
Jacquot, V., Ying, J. & Kreiman, G. Can Deep Learning Recognize Subtle Human Activities?. CVPR 2020 (2020).
Shalev-Shwartz, S. & Shashua, A. Can we Contain Covid-19 without Locking-down the Economy?. (2020).PDF icon CBMM Memo 104 v4 (Apr. 6, 2020) (418.25 KB)PDF icon CBMM Memo 104 v3 (Apr. 1, 2020) (452.94 KB)PDF icon CBMM Memo 104 v2 (Mar. 28, 2020) (427.39 KB)PDF icon CBMM-Memo-104.pdf (425.12 KB)
Madan, S. et al. On the Capability of Neural Networks to Generalize to Unseen Category-Pose Combinations. (2020).PDF icon CBMM-Memo-111.pdf (9.76 MB)
Schulz, E., Quiroga, F. & Gershman, S. J. Communicating Compositional Patterns. Open Mind 4, 25 - 39 (2020).
Poggio, T., Liao, Q. & Banburski, A. Complexity Control by Gradient Descent in Deep Networks. Nature Communications 11, (2020).PDF icon s41467-020-14663-9.pdf (431.68 KB)
Malkin, E., Deza, A. & Poggio, T. CUDA-Optimized real-time rendering of a Foveated Visual System. Shared Visual Representations in Human and Machine Intelligence (SVRHM) workshop at NeurIPS 2020 (2020). at <>PDF icon Foveated_Drone_SVRHM_2020.pdf (13.44 MB)PDF icon v1 (12/15/2020) (14.7 MB)
Kuo, Y. - L., Katz, B. & Barbu, A. Deep compositional robotic planners that follow natural language commands . International Conference on Robotics and Automation (ICRA) (2020).
Villalobos, K. M. et al. Do Neural Networks for Segmentation Understand Insideness?. (2020).PDF icon CBMM-Memo-105.pdf (4.63 MB)PDF icon CBMM Memo 105 v2 (July 2, 2020) (3.2 MB)
Banburski, A. et al. Dreaming with ARC. Learning Meets Combinatorial Algorithms workshop at NeurIPS 2020 (2020).PDF icon CBMM Memo 113.pdf (1019.64 KB)
Yildirim, I., Belledonne, M., Freiwald, W. A. & Tenenbaum, J. B. Efficient inverse graphics in biological face processing. Science Advances 6, eaax5979 (2020).PDF icon eaax5979.full_.pdf (3.22 MB)
Zaslavsky, N., Hu, J. & Levy, R. Emergence of Pragmatic Reasoning From Least-Effort Optimization . 13th International Conference on the Evolution of Language (EvoLang) (2020).
Kuo, Y. - L., Katz, B. & Barbu, A. Encoding formulas as deep networks: Reinforcement learning for zero-shot execution of LTL formulas. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020). doi:10.1109/IROS45743.2020.9341325
Kar, K. & DiCarlo, J. J. Evidence that recurrent pathways between the prefrontal and inferior temporal cortex is critical during core object recognition . COSYNE (2020).
Shalev-Shwartz, S. & Shashua, A. An Exit Strategy from the Covid-19 Lockdown based on Risk-sensitive Resource Allocation. (2020).PDF icon CBMM-Memo-106.pdf (431.13 KB)
Schaeffer, D. J. et al. Face selective patches in marmoset frontal cortexAbstract. Nature Communications 11, (2020).
Kar, K. & DiCarlo, J. J. Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Neuron (2020). doi:10.1016/j.neuron.2020.09.035PDF icon PIIS0896627320307595.pdf (3.92 MB)
Smith, K. et al. The fine structure of surprise in intuitive physics: when, why, and how much?. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020 (Denison, S., Mack, M., Xu, Y. & Armstrong, B. C.) (2020). at <>
Rangamani, A., Rosasco, L. & Poggio, T. For interpolating kernel machines, the minimum norm ERM solution is the most stable. (2020).PDF icon CBMM_Memo_108.pdf (1015.14 KB)PDF icon Better bound (without inequalities!) (1.03 MB)