Publication

Found 910 results
Author Title [ Type(Desc)] Year
Conference Paper
Lotter, W., Kreiman, G. & Cox, D. Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning. ICLR (2017).PDF icon 1605.08104.pdf (2.9 MB)
Adler, A., Araya-Polo, M. & Poggio, T. Deep Recurrent Architectures for Seismic Tomography. 81st EAGE Conference and Exhibition 2019 (2019).
Zhang, C., Evangelopoulos, G., Voinea, S., Rosasco, L. & Poggio, T. A Deep Representation for Invariance and Music Classification. ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2014). doi:10.1109/ICASSP.2014.6854954
Kuo, Y. - L., Barbu, A. & Katz, B. Deep sequential models for sampling-based planning. The IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018) (2018). doi:10.1109/IROS.2018.8593947PDF icon kuo2018planning.pdf (637.67 KB)
Zhang, Z., Xie, C., Wang, J., Xie, L. & Yuille, A. DeepVoting: An Explainable Framework for Semantic Part Detection under Partial Occlusion. Conference on Computer Vision and Pattern Recognition (CVPR) (2018). at <http://cvpr2018.thecvf.com/>
Wang, J. et al. Detecting Semantic Parts on Partially Occluded Objects. British Machine Vision Conference (BMVC) (2017). at <https://bmvc2017.london/proceedings/>
Adler, A. & Wax, M. Direct Localization by Partly Calibrated Arrays: A Relaxed Maximum Likelihood Solution. 27th European Signal Processing Conference, EUSIPCO 2019 (2019). at <http://eusipco2019.org/technical-program>
Zhang, C., Voinea, S., Evangelopoulos, G., Rosasco, L. & Poggio, T. Discriminative Template Learning in Group-Convolutional Networks for Invariant Speech Representations. INTERSPEECH-2015 (International Speech Communication Association (ISCA), 2015). at <http://www.isca-speech.org/archive/interspeech_2015/i15_3229.html>
Becker, L. A., Penagos, H., Manoach, D. S., Wilson, M. A. & Varela, C. Disruption of CA1 Sharp-Wave Ripples by the nonbenzodiazepine hypnotic eszopiclone . Society for Neuroscience (2019).
Berzak, Y., Barbu, A., Harari, D., Katz, B. & Ullman, S. Do You See What I Mean? Visual Resolution of Linguistic Ambiguities. Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal. (2015).
Banburski, A. et al. Dynamics & Generalization in Deep Networks -Minimizing the Norm. NAS Sackler Colloquium on Science of Deep Learning (2019).
Spokes, A. C. & Spelke, E. S. Early Reasoning about Affiliation and Social Networks. International Conference on Infant Studies (ICIS) (2016).
Chen, F., Roig, G., Isik, L., Boix, X. & Poggio, T. Eccentricity Dependent Deep Neural Networks: Modeling Invariance in Human Vision. AAAI Spring Symposium Series, Science of Intelligence (2017). at <https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15360>PDF icon paper.pdf (963.87 KB)
Zhang, J., Han, Y., Poggio, T. & Roig, G. Eccentricity Dependent Neural Network with Recurrent Attention for Scale, Translation and Clutter Invariance . Vision Science Society (2019).
Dobs, K. et al. Effects of Face Familiarity in Humans and Deep Neural Networks . European Conference on Visual Perception (2019).
Yildirim, I., Kulkarni, T., Freiwald, W. A. & Tenenbaum, J. B. Efficient and robust analysis-by-synthesis in vision: A computational framework, behavioral tests, and modeling neuronal representations. Annual Conference of the Cognitive Science Society (2015).PDF icon yildirimetal_cogsci15.pdf (3.22 MB)
Ullman, T., Tenenbaum, J. B. & Spelke, E. S. Effort as a bridging concept across action and action understanding: Weight and Physical Effort in Predictions of Efficiency in Other Agents. International Conference on Infant Studies (ICIS) (2016).
Zaslavsky, N., Hu, J. & Levy, R. Emergence of Pragmatic Reasoning From Least-Effort Optimization . 13th International Conference on the Evolution of Language (EvoLang) (2020).
Kuo, Y. - L., Katz, B. & Barbu, A. Encoding formulas as deep networks: Reinforcement learning for zero-shot execution of LTL formulas. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020). doi:10.1109/IROS45743.2020.9341325
Meanti*, G. et al. Estimating Koopman operators with sketching to provably learn large scale dynamical systems. 37th Conference on Neural Information Processing Systems (NeurIPS 2023) (2023). at <https://proceedings.neurips.cc/paper_files/paper/2023/file/f3d1e34a15c0af0954ae36a7f811c754-Paper-Conference.pdf>
Kar, K. & DiCarlo, J. J. Evidence that recurrent pathways between the prefrontal and inferior temporal cortex is critical during core object recognition . Society for Neuroscience (2019).
Kar, K. & DiCarlo, J. J. Evidence that recurrent pathways between the prefrontal and inferior temporal cortex is critical during core object recognition . COSYNE (2020).
Obiajulu, D., Vazquez, Y., Ianni, G. A., Yazdani, F. & Freiwald, W. A. Facial Expression Scoring and Assessment of Facial Movement Kinematics in Non-Human Primates. The Rockefeller University 2019 Summer Science Research Program (SSRP) (2019).
Smith, K. A. et al. The fine structure of surprise in intuitive physics: when, why, and how much?. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020 (Denison, S., Mack, M., Xu, Y. & Armstrong, B. C.) (2020). at <https://cogsci.mindmodeling.org/2020/papers/0761/index.html>
Linderman, S. W., Stock, C. & Adams, R. A framework for studying synaptic plasticity with neural spike train data. Neural Information Processing Systems (2014).PDF icon 5274-a-framework-for-studying-synaptic-plasticity-with-neural-spike-train-data.pdf (4.6 MB)

Pages