Publication

Export 12 results:
Filters: Author is Wu, Jiajun  [Clear All Filters]
2020
Smith, K. et al. The fine structure of surprise in intuitive physics: when, why, and how much?. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020 (Denison, S., Mack, M., Xu, Y. & Armstrong, B. C.) (2020). at <https://cogsci.mindmodeling.org/2020/papers/0761/index.html>
2017
Zhang, Z. et al. Generative modeling of audible shapes for object perception. The IEEE International Conference on Computer Vision (ICCV) (2017). at <http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Generative_Modeling_of_ICCV_2017_paper.html>
Wu, J., Lu, E., Kohli, P., Freeman, W. T. & Tenenbaum, J. B. Learning to See Physics via Visual De-animation. Advances in Neural Information Processing Systems 30 152–163 (2017). at <http://papers.nips.cc/paper/6620-learning-to-see-physics-via-visual-de-animation.pdf>PDF icon Learning to See Physics via Visual De-animation (1.11 MB)
Wu, J. et al. MarrNet: 3D Shape Reconstruction via 2.5D Sketches. Advances in Neural Information Processing Systems 30 540–550 (2017). at <http://papers.nips.cc/paper/6657-marrnet-3d-shape-reconstruction-via-25d-sketches.pdf>PDF icon MarrNet: 3D Shape Reconstruction via 2.5D Sketches (6.25 MB)
Janner, M., Wu, J., Kulkarni, T., Yildirim, I. & Tenenbaum, J. B. Self-supervised intrinsic image decomposition. Annual Conference on Neural Information Processing Systems (NIPS) (2017). at <https://papers.nips.cc/paper/7175-self-supervised-intrinsic-image-decomposition>PDF icon intrinsicImg_nips_2017.pdf (5.87 MB)
zhang, zhoutong et al. Shape and Material from Sound. Advances in Neural Information Processing Systems 30 1278–1288 (2017). at <http://papers.nips.cc/paper/6727-shape-and-material-from-sound.pdf>
Soltani, A. Arsalan, Huang, H., Wu, J., Kulkarni, T. & Tenenbaum, J. B. Synthesizing 3D Shapes via Modeling Multi-view Depth Maps and Silhouettes with Deep Generative Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). doi:10.1109/CVPR.2017.269PDF icon Synthesizing 3D Shapes via Modeling Multi-View Depth Maps and Silhouettes with Deep Generative Networks.pdf (2.86 MB)