Publication

Found 910 results
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
O
Sheskin, M. et al. Online Developmental Science to Foster Innovation, Access, and Impact. Trends in Cognitive Sciences 24, 675 - 678 (2020).
Wu, Y., Muentener, P. & Schulz, L. One- to Four-year-olds’ Ability to Connect Diverse Positive Emotional Expressions to Their Probable Causes . Society for Research in Child Development (2017).
Casper, S., Nadeau, M. & Kreiman, G. One thing to fool them all: generating interpretable, universal, and physically-realizable adversarial features. arXiv (2022). doi:10.48550/arXiv.2110.03605PDF icon 2110.03605.pdf (6.7 MB)
Wong, A. & Yuille, A. One Shot Learning via Compositions of Meaningful Patches. International Conference on Computer Vision (ICCV) (2015).PDF icon AlexWongOneShotCVPR2015.pdf (1.83 MB)
Wong, A. & Yuille, A. One Shot Learning by Composition of Meaningful Patches. International Conference on Computer Vision (ICCV) (2015).PDF icon AlexWongOneShotCVPR2015.pdf (1.83 MB)
Kamps, F. S., Julian, J. B., Kubilius, J., Kanwisher, N. & Dilks, D. D. The occipital place area represents the local elements of scenes. NeuroImage 132, 417 - 424 (2016).
Liao, Q. & Poggio, T. Object-Oriented Deep Learning. (2017).PDF icon CBMM-Memo-070.pdf (963.54 KB)
Barbu, A. et al. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9142-objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.pdf (16.31 MB)
Rosasco, L. Object recognition data sets (iCub/IIT). (2013).
Lewis, O. & Poggio, T. From Neuron to Cognition via Computational Neuroscience (The MIT Press, 2016). at <https://mitpress.mit.edu/neuron-cognition>
N
Kreiman, G. A null model for cortical representations with grandmothers galore. Language, Cognition and Neuroscience 274 - 285 (2017). doi:10.1080/23273798.2016.1218033
Lattman, E., Poggio, T. & Westervelt, R. NSF Science and Technology Centers – The Class of 2013. (2013).PDF icon NSFGender2013_poster.pdf (2.77 MB)
Poggio, T., Rosasco, L., Shashua, A., Cohen, N. & Anselmi, F. Notes on Hierarchical Splines, DCLNs and i-theory. (2015).PDF icon CBMM Memo 037 (1.83 MB)
Jara-Ettinger, J. Not So Innocent: Toddlers’ Inferences About Costs and Culpability. Psychological Science 26, 633-40 (2015).PDF icon NotSoInnocent_InPress.pdf (238.53 KB)
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-based Generalization Bounds for Sparse Neural Networks. NeurIPS 2023 (2023). at <https://proceedings.neurips.cc/paper_files/paper/2023/file/8493e190ff1bbe3837eca821190b61ff-Paper-Conference.pdf>PDF icon NeurIPS-2023-norm-based-generalization-bounds-for-sparse-neural-networks-Paper-Conference.pdf (577.69 KB)
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-Based Generalization Bounds for Compositionally Sparse Neural Networks. (2023).PDF icon Norm-based bounds for convnets.pdf (1.2 MB)
Miconi, T., Groomes, L. & Kreiman, G. A normalization model of visual search predicts single trial human fixations in an object search task. (2014).PDF icon CBMM-Memo-008.pdf (854.51 KB)
Puig, X., Shu, T., Tenenbaum, J. B. & Torralba, A. NOPA: Neurally-guided Online Probabilistic Assistance for Building Socially Intelligent Home Assistants. 2023 IEEE International Conference on Robotics and Automation (ICRA) (2023). doi:10.1109/ICRA48891.2023.10161352
Puig, X., Shu, T., Tenenbaum, J. B. & Torralba, A. NOPA: Neurally-guided Online Probabilistic Assistance for Building Socially Intelligent Home Assistants. arXiv (2023). at <https://arxiv.org/abs/2301.05223>
Linderman, S. W., Johnson, M. J., Wilson, M. A. & Chen, Z. A Nonparametric Bayesian Approach to Uncovering Rat Hippocampal Population Codes During Spatial Navigation. (2014).PDF icon CBMM-Memo-027.pdf (9.44 MB)
Grossman, N. et al. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell 169, 1029 - 1041.e16 (2017).
Bigelow, E. J., McCoy, J. P. & Ullman, T. D. Non-commitment in mental imagery. Cognition 238, 105498 (2023).
Valente, S., Marques, T. & Lima, S. Q. No evidence for prolactin’s involvement in the post-ejaculatory refractory periodAbstract. Communications Biology 4, (2021).
Kreiman, G., Rutishauser, U., Cerf, M. & Fried, I. Single neuron studies of the human brain. Probing cognition (2014).
Meyers, E., Dean, M. & Hale, G. J. New Data Science tools for analyzing neural data and computational models. Society for Neuroscience (2016).

Pages