Publication

Found 910 results
Author Title [ Type(Desc)] Year
Conference Paper
Nye, M., Solar-Lezama, A., Tenenbaum, J. B. & Lake, B. M. Learning Compositional Rules via Neural Program Synthesis. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020). at <https://proceedings.neurips.cc/paper/2020/hash/7a685d9edd95508471a9d3d6fcace432-Abstract.html>PDF icon 2003.05562.pdf (2.51 MB)
Liao, Q., Leibo, J. Z. & Poggio, T. Learning invariant representations and applications to face verification. NIPS 2013 (Advances in Neural Information Processing Systems 26, 2014). at <http://nips.cc/Conferences/2013/Program/event.php?ID=4074>PDF icon Liao_Leibo_Poggio_NIPS_2013.pdf (687.06 KB)
Ross, C., Berzak, Y., Katz, B. & Barbu, A. Learning Language from Vision. Workshop on Visually Grounded Interaction and Language (ViGIL) at the Thirty-third Annual Conference on Neural Information Processing Systems (NeurIPS) (2019).
Mao, J. et al. Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images. International Conference of Computer Vision (2015). at <www.stat.ucla.edu/~junhua.mao/projects/child_learning.html>PDF icon child_learning_iccv2015.pdf (1.16 MB)
Canas, G. D., Poggio, T. & Rosasco, L. Learning manifolds with k-means and k-flats. Advances in Neural Information Processing Systems 25 (NIPS 2012) (2012). at <https://papers.nips.cc/paper/2012/hash/b20bb95ab626d93fd976af958fbc61ba-Abstract.html>
Morales, A., Premtoon, V., Avery, C., Felshin, S. & Katz, B. Learning to Answer Questions from Wikipedia Infoboxes. The 2016 Conference on Empirical Methods on Natural Language Processing (EMNLP 2016) (2016).PDF icon Morales-EMNLP2016.pdf (197.28 KB)
Singh, P. et al. Learning to Learn: How to Continuously Teach Humans and Machines . International Conference on Computer Vision (ICCV), 2023 (2023). at <https://openaccess.thecvf.com/content/ICCV2023/html/Singh_Learning_to_Learn_How_to_Continuously_Teach_Humans_and_Machines_ICCV_2023_paper.html>
Frogner, C., Zhang, C., Mobahi, H., Araya-Polo, M. & Poggio, T. Learning with a Wasserstein Loss. Advances in Neural Information Processing Systems (NIPS 2015) 28 (2015). at <http://arxiv.org/abs/1506.05439>PDF icon Learning with a Wasserstein Loss_1506.05439v2.pdf (2.57 MB)
Mroueh, Y., Voinea, S. & Poggio, T. Learning with Group Invariant Features: A Kernel Perspective. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5798-learning-with-group-invariant-features-a-kernel-perspective>PDF icon LearningInvarianceKernel_NIPS2015.pdf (292.18 KB)
Rosasco, L. & Villa, S. Learning with incremental iterative regularization. NIPS 2015 (2015). at <https://papers.nips.cc/paper/6015-learning-with-incremental-iterative-regularization>PDF icon Learning with Incremental Iterative Regularization_1405.0042v2.pdf (504.66 KB)
Rudi, A., Camoriano, R. & Rosasco, L. Less is More: Nyström Computational Regularization. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5936-less-is-more-nystrom-computational-regularization>PDF icon Less is More- Nystr ̈om Computational Regularization_1507.04717v4.pdf (287.14 KB)
Spokes, A. C., Howard, R., Mehr, S. A. & Krasnow, M. M. Like Adults, children make consistent welfare tradeoff allocations. Budapest CEU Conference on Cognitive Development (2017).
Zhang, C., Frogner, C., Araya-Polo, M. & Hohl, D. Machine Learning Based Automated Fault Detection in Seismic Traces. EAGE Conference and Exhibition 2014 (2014). at <http://cbcl.mit.edu/publications/eage14.pdf>
Making learning count: A large-scale randomized control trial testing the effects of core mathematical training on school readiness in young children. International Mind, Brain and Education Society (2016).
Marques, T. & DiCarlo, J. J. A meta-analysis of ANNs as models of primate V1 . Bernstein (2019).
Ellis, K. & Lewis, O. Metareasoning in Symbolic Domains. NIPS Workshop | Bounded Optimality and Rational Metareasoning (2015). at <https://sites.google.com/site/boundedoptimalityworkshop/>PDF icon metareasoning_submitted.pdf (491.95 KB)
Srivastava, S., Ben-Yosef, G. & Boix, X. Minimal images in deep neural networks: Fragile Object Recognition in Natural Images. International Conference on Learning Representations (ICLR) (2019). at <https://arxiv.org/pdf/1902.03227.pdf>
Ben-Yosef, G., Yachin, A. & Ullman, S. A model for interpreting social interactions in local image regions. AAAI Spring Symposium Series, Science of Intelligence (2017). at <http://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15354>PDF icon 2017-Ben-Yosef_Yachin_Ullman-A_model_for_interpreting_social_interactions_in_local_image_regions.pdf (1.53 MB)
Winston, P. Henry. Model-based Story Summary. 6th Workshop on Computational Models of Narrative (2015). doi:10.4230/OASIcs.CMN.2015.157
Nakahashi, R., Baker, C. & Tenenbaum, J. B. Modeling human understanding of complex intentional action with a Bayesian nonparametric subgoal model. AAAI (2016).PDF icon nakahashi_aaai2016.pdf (1.74 MB)
Schiatti, L. et al. Modeling Visual Impairments with Artificial Neural Networks: a Review. International Conference on Computer Vision 2023 (2023). at <https://openaccess.thecvf.com/content/ICCV2023W/ACVR/html/Schiatti_Modeling_Visual_Impairments_with_Artificial_Neural_Networks_a_Review_ICCVW_2023_paper.html>
Yaari, A. Uri et al. Multi-resolution modeling of a discrete stochastic process identifies causes of cancer. International Conference on Learning Representations (2021). at <https://openreview.net/forum?id=KtH8W3S_RE>
Banburski, A. & Rangamani, A. Neural Collapse in Deep Homogeneous Classifiers and the role of Weight Decay. IEEE International Conference on Acoustics, Speech and Signal Processing (2022).
Vazquez, Y., Ianni, G. & Freiwald, W. A. Neural mechanisms supporting facial expressions . unknown (2019).
Puig, X., Shu, T., Tenenbaum, J. B. & Torralba, A. NOPA: Neurally-guided Online Probabilistic Assistance for Building Socially Intelligent Home Assistants. 2023 IEEE International Conference on Robotics and Automation (ICRA) (2023). doi:10.1109/ICRA48891.2023.10161352

Pages