Publication

Found 910 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Liu, S., Cushman, F. A., Gershman, S. J., Kool, W. & Spelke, E. S. Hard choices: Children’s understanding of the cost of action selection. . Cognitive Science Society (2019).PDF icon phk_cogsci_2019_final.pdf (276.14 KB)
McPherson, M. J., Grace, R. C. & McDermott, J. H. Harmonicity aids hearing in noise. Attention, Perception, & Psychophysics (2022). doi:10.3758/s13414-021-02376-0
Caldarelli, E., Chatalic, A., Colom´e, A. `a, Rosasco, L. & Torras, C. Heteroscedastic Gaussian Processes and Random Features: Scalable Motion Primitives with Guarantees. 7th Conference on Robot Learning (CoRL 2023 (2023). at <https://proceedings.mlr.press/v229/caldarelli23a/caldarelli23a.pdf>
Knoblich, U. hhpkg: Hodgkin-Huxley Package for CNS. (2012).File hhpkg.tar (380 KB)
Marques, T., Schrimpf, M. & DiCarlo, J. J. Hierarchical neural network models that more closely match primary visual cortex tend to better explain higher level visual cortical responses . COSYNE (2020).
Bill, J., Pailian, H., Gershman, S. J. & Drugowitsch, J. Hierarchical structure is employed by humans during visual motion perception. Proceedings of the National Academy of Sciences 117, 24581 - 24589 (2020).
Deza, A., Liao, Q., Banburski, A. & Poggio, T. Hierarchically Local Tasks and Deep Convolutional Networks. (2020).PDF icon CBMM_Memo_109.pdf (2.12 MB)
Le Van Quyen, M. et al. High-frequency oscillations in human and monkey neocortex during the wake–sleep cycle. Proceedings of the National Academy of Sciences (2016). doi:10.1073/pnas.1523583113PDF icon BetaGammaSleepAwakeFull.pdf (3.68 MB)
Khosla, M., N. Murty, A. Ratan & Kanwisher, N. A highly selective response to food in human visual cortex revealed by hypothesis-free voxel decomposition. Current Biology 32, 4159 - 4171.e9 (2022).
Feliciano-Ramos, P. A., Galazo, M., Penagos, H. & Wilson, M. Hippocampal memory reactivation during sleep is correlated with specific cortical states of the retrosplenial and prefrontal cortices. Learning & Memory 30, 221 - 236 (2023).
Sanders, H., Wilson, M. A. & Gershman, S. J. Hippocampal remapping as hidden state inference. eLife 9, (2020).
Sanders, H., Wilson, M. A. & Gershman, S. J. Hippocampal Remapping as Hidden State Inference. (2019). doi:https://doi.org/10.1101/743260PDF icon CBMM-Memo-101.pdf (12.78 MB)
Mutch, J. HMAX Package for CNS. (2012).File hmax.tar (210 KB)
Mutch, J. hmin: A Minimal HMAX Implementation. (2010).
Nickel, M., Rosasco, L. & Poggio, T. Holographic Embeddings of Knowledge Graphs. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (2016).PDF icon 1510.04935v2.pdf (360.65 KB)
Nickel, M., Rosasco, L. & Poggio, T. Holographic Embeddings of Knowledge Graphs. (2015).PDF icon holographic-embeddings.pdf (677.87 KB)
Gan, Y. & Poggio, T. A Homogeneous Transformer Architecture. (2023).PDF icon CBMM Memo 143 v2 (1.1 MB)
Leonard, J. A., Garcia, A. & Schulz, L. How Adults’ Actions, Outcomes, and Testimony Affect Preschoolers’ Persistence. Child Development (2019). doi:10.1111/cdev.13305
Poggio, T. How Deep Sparse Networks Avoid the Curse of Dimensionality: Efficiently Computable Functions are Compositionally Sparse. (2022).PDF icon v1.0 (984.15 KB)PDF icon v5.7 adding in context learning etc (1.16 MB)
Idiart, M. A. P., Villavicencio, A., Katz, B., Rennó-Costa, C. & Lisman, J. How Does the Brain Represents Language and Answers Questions? Using an AI System to Understand the Underlying Neurobiological Mechanisms. Frontiers in Computational Neuroscience 13, (2019).

Pages