Export 862 results:
Cohen, M. A. et al. Representational similarity precedes category selectivity in the developing ventral visual pathway. NeuroImage 197, 565 - 574 (2019).
Cusimano, M., Traer, J. & McDermott, J. H. Scrape, rub, and roll: causal inference in the perception of sustained contact sounds . Cognitive Science (2019).
Fazeli, N. et al. See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion. Science Robotics 4, eaav3123 (2019).
Poggio, T., Banburski, A. & Liao, Q. Theoretical Issues in Deep Networks. (2019).PDF icon CBMM Memo 100 v1 (1.71 MB)PDF icon CBMM Memo 100 v3 (8/25/2019) (1.31 MB)PDF icon CBMM Memo 100 v4 (11/19/2019) (1008.23 KB)
Liao, Q., Banburski, A. & Poggio, T. Theories of Deep Learning: Approximation, Optimization and Generalization . TECHCON 2019 (2019).
Jozwik, K. M., Schrimpf, M., Kanwisher, N. & DiCarlo, J. J. To find better neural network models of human vision, find better neural network models of primate vision. BioRxiv (2019). at <>
Patzelt, E. H., Kool, W., Millner, A. J. & Gershman, S. J. The transdiagnostic structure of mental effort avoidance. Scientific Reports 9, (2019).
Jacoby, N. et al. Universal and Non-universal Features of Musical Pitch Perception Revealed by Singing. Current Biology (2019). doi:10.1016/j.cub.2019.08.020
Stephenson, C. et al. Untangling in Invariant Speech Recognition. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9583-untangling-in-invariant-speech-recognition.pdf (2.09 MB)
Ullman, S. Using neuroscience to develop artificial intelligence. Science 363, 692 - 693 (2019).
Phillips-Jones, T., Coronel, S. Otero, Sani, I. & Freiwald, W. A. A Virtual Reality Experimental Approach for Studying How the Brain Implements Attentive Behaviors. Tri-Institute 2019 Gateways to the Laboratory Summer Program (2019).
Han, C., Mao, J., Gan, C., Tenenbaum, J. B. & Wu, J. Visual Concept-Metaconcept Learning. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 8745-visual-concept-metaconcept-learning.pdf (1.92 MB)
Zarco, W. & Freiwald, W. A. Visual Features for Invariant Coding by Face Selective Neurons . 2019 Conference on Cognitive Computational Neuroscience (CCN) (2019).
Banburski, A. et al. Weight and Batch Normalization implement Classical Generalization Bounds . ICML (2019).
Kreiman, G. Psychology of Learning and Motivation 70, (2019).
Ellis, K. et al. Write, Execute, Assess: Program Synthesis with a REPL. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9116-write-execute-assess-program-synthesis-with-a-repl.pdf (3.9 MB)
Mlynarski, W. & Hermundstad, A. M. Adaptive Coding for Dynamic Sensory Inference. eLife (2018).
Mhaskar, H. & Poggio, T. An analysis of training and generalization errors in shallow and deep networks. (2018).PDF icon CBMM-Memo-076.pdf (772.61 KB)PDF icon CBMM-Memo-076v2.pdf (2.67 MB)
Berzak, Y., Katz, B. & Levy, R. Assessing Language Proficiency from Eye Movements in Reading. 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2018). at <>PDF icon 1804.07329.pdf (350.43 KB)
Spokes, A. C. & Spelke, E. S. At 4.5 but not 5.5 years, children favor kin when the stakes are moderately high. PLOS ONE 13, (2018).
Xiao, W., Chen, H., Liao, Q. & Poggio, T. Biologically-plausible learning algorithms can scale to large datasets. (2018).PDF icon CBMM-Memo-092.pdf (1.31 MB)
Muir, D., Fang, X. & Meyers, E. Brain-Observatory-Toolbox. (2018).
Schrimpf, M. & Kubilius, J. Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like?. bioRxiv preprint (2018). doi:10.1101/407007PDF icon Brain-Score bioRxiv.pdf (789.83 KB)
Villalobos, K. M. et al. Can Deep Neural Networks Do Image Segmentation by Understanding Insideness?. (2018).PDF icon CBMM-Memo-095.pdf (1.96 MB)
Liao, Q., Miranda, B., Hidary, J. & Poggio, T. Classical generalization bounds are surprisingly tight for Deep Networks. (2018).PDF icon CBMM-Memo-091.pdf (1.43 MB)PDF icon CBMM-Memo-091-v2.pdf (1.88 MB)