Publication

Found 910 results
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Spokes, A. C., Howard, R., Mehr, S. A. & Krasnow, M. M. Like adults, children make consistent welfare tradeoff allocations. Society for Research in Child Development Biennial Meeting (2017).
Allen, K. R. et al. Lifelong learning of cognitive styles for physical problem-solving: The effect of embodied experienceAbstract. Psychonomic Bulletin & Review (2023). doi:10.3758/s13423-023-02400-4
Traer, J. & McDermott, J. H. A library of real-world reverberation and a toolbox for its analysis and measurement. Annual Meeting of Acoustical Society of America (2017).
Anzellottti, S., Houlihan, S. Dae, Liburd, Jr, S. & Saxe, R. Leveraging facial expressions and contextual information to investigate opaque representations of emotions. Emotion (2021). doi:10.1037/emo0000685PDF icon Anzellotti 2021 Emotion.pdf (1.08 MB)
Zaslavsky, N., Maldonado, M. & Culbertson, J. Let's talk (efficiently) about us: Person systems achieve near-optimal compression. Proceedings of the Annual Meeting of the Cognitive Science Society 43, (2021).
Rudi, A., Camoriano, R. & Rosasco, L. Less is More: Nyström Computational Regularization. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5936-less-is-more-nystrom-computational-regularization>PDF icon Less is More- Nystr ̈om Computational Regularization_1507.04717v4.pdf (287.14 KB)
Xu, C. et al. Lecture Notes in Computer ScienceComputer Vision – ECCV 2022Image2Point: 3D Point-Cloud Understanding with 2D Image Pretrained Models. 13697, 638 - 656 (Springer Nature Switzerland, 2022).
Owens, A., Isola, P., McDermott, J. H., Freeman, W. T. & Torralba, A. Lecture Notes in Computer ScienceComputer Vision – ECCV 2016Ambient Sound Provides Supervision for Visual Learning. 14th European Conference on Computer Vision 801 - 816 (2016). doi:10.1007/978-3-319-46448-010.1007/978-3-319-46448-0_48
Rosasco, L. & Villa, S. Learning with incremental iterative regularization. NIPS 2015 (2015). at <https://papers.nips.cc/paper/6015-learning-with-incremental-iterative-regularization>PDF icon Learning with Incremental Iterative Regularization_1405.0042v2.pdf (504.66 KB)
Mroueh, Y., Voinea, S. & Poggio, T. Learning with Group Invariant Features: A Kernel Perspective. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5798-learning-with-group-invariant-features-a-kernel-perspective>PDF icon LearningInvarianceKernel_NIPS2015.pdf (292.18 KB)
Frogner, C., Zhang, C., Mobahi, H., Araya-Polo, M. & Poggio, T. Learning with a Wasserstein Loss. Advances in Neural Information Processing Systems (NIPS 2015) 28 (2015). at <http://arxiv.org/abs/1506.05439>PDF icon Learning with a Wasserstein Loss_1506.05439v2.pdf (2.57 MB)
Wu, J., Lu, E., Kohli, P., Freeman, W. T. & Tenenbaum, J. B. Learning to See Physics via Visual De-animation. Advances in Neural Information Processing Systems 30 152–163 (2017). at <http://papers.nips.cc/paper/6620-learning-to-see-physics-via-visual-de-animation.pdf>PDF icon Learning to See Physics via Visual De-animation (1.11 MB)
Singh, P. et al. Learning to Learn: How to Continuously Teach Humans and Machines . International Conference on Computer Vision (ICCV), 2023 (2023). at <https://openaccess.thecvf.com/content/ICCV2023/html/Singh_Learning_to_Learn_How_to_Continuously_Teach_Humans_and_Machines_ICCV_2023_paper.html>
Morales, A., Premtoon, V., Avery, C., Felshin, S. & Katz, B. Learning to Answer Questions from Wikipedia Infoboxes. The 2016 Conference on Empirical Methods on Natural Language Processing (EMNLP 2016) (2016).PDF icon Morales-EMNLP2016.pdf (197.28 KB)
Eric, W., Kevin, W. & Kreiman, G. Learning scene gist with convolutional neural networks to improve object recognition. 2018 52nd Annual Conference on Information Sciences and Systems (CISS) (2018). doi:10.1109/CISS.2018.8362305PDF icon 08362305.pdf (3.17 MB)
Wu, K., Wu, E. & Kreiman, G. Learning Scene Gist with Convolutional Neural Networks to Improve Object Recognition. arXiv | Cornell University arXiv:1803.01967, (2018).
Ullman, T. D., Stuhlmüller, A., Goodman, N. D. & Tenenbaum, J. B. Learning physical parameters from dynamic scenes. Cognitive Psychology 104, 57-82 (2018).PDF icon T-Ullman-etal_CogPsych_LearningPhysicalParametersFromDynamicScenes.pdf (3.15 MB)
Letizia, M. et al. Learning new physics efficiently with nonparametric methodsAbstract. The European Physical Journal C 82, (2022).
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Codes for Natural Sounds. Association for Otolaryngology Mid-Winter Meeting (2017).
Mlynarski, W. & McDermott, J. H. Learning mid-level codes for natural sounds. Computational and Systems Neuroscience (Cosyne) 2016 (2016). at <http://www.cosyne.org/c/index.php?title=Cosyne2016_posters_2>PDF icon Wiktor_COSYNE_2015_hierarchy_final.pdf (2.52 MB)
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Codes for Natural Sounds. Advances and Perspectives in Auditory Neuroscience (2016).PDF icon APAN_large_JHM kopia.pdf (19.74 MB)
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Auditory Codes from Natural Sound Statistics. (2017).PDF icon MlynarskiMcDermott_Memo060.pdf (7.11 MB)
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Auditory Codes from Natural Sound Statistics. Neural Computation 30, 631-669 (2018).
Canas, G. D., Poggio, T. & Rosasco, L. Learning manifolds with k-means and k-flats. Advances in Neural Information Processing Systems 25 (NIPS 2012) (2012). at <https://papers.nips.cc/paper/2012/hash/b20bb95ab626d93fd976af958fbc61ba-Abstract.html>
Mao, J. et al. Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images. International Conference of Computer Vision (2015). at <www.stat.ucla.edu/~junhua.mao/projects/child_learning.html>PDF icon child_learning_iccv2015.pdf (1.16 MB)

Pages