Publication

Found 910 results
Author Title [ Type(Desc)] Year
Conference Proceedings
Ullman, T. D. et al. Draping an Elephant: Uncovering Children's Reasoning About Cloth-Covered Objects. Cognitive Science Society (2019). at <https://mindmodeling.org/cogsci2019/papers/0506/index.html>PDF icon Draping an Elephant: Uncovering Children's Reasoning About Cloth-Covered Objects.pdf (2.62 MB)
Dellaferrera, G. & Kreiman, G. Error-driven Input Modulation: Solving the Credit Assignment Problem without a Backward Pass. Proceedings of the 39th International Conference on Machine Learning, PMLR 162, 4937-4955 (2022).PDF icon dellaferrera22a.pdf (909.91 KB)
Gerstenberg, T., Zhou, L., Smith, K. A. & Tenenbaum, J. B. Faulty Towers: A counterfactual simulation model of physical support. Proceedings of the 39th Annual Conference of the Cognitive Science Society (2017).PDF icon Faulty Towers A counterfactual simulation model of physical support, Gerstenberg et al., 2017.pdf (8.75 MB)
Harrington, A. & Deza, A. Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks. International Conference on Learning Representations (ICLR) (2022). at <https://openreview.net/forum?id=yeP_zx9vqNm>
Serrino, J., Kleiman-Weiner, M., Parkes, D. C. & Tenenbaum, J. B. Finding Friend and Foe in Multi-Agent Games. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon Max KW paper.pdf (928.96 KB)
Wu, Y. & Schulz, L. A fine-grained understanding of emotions: Young children match within-valence emotional expressions to their causes. Cognitive Science Conference (CogSci) 2685-2690 (2015).PDF icon Cogsci Emotion pairings 2-4-15 Final version.pdf (729.07 KB)
Spokes, A. C. & Spelke, E. S. Four-year-old children favor kin when the stakes are higher. Cognitive Development Society (CDS) (2017). at <https://cogdevsoc.org/wp-content/uploads/2017/10/CDS2017AbstractBook.pdf>
Fetaya, E., Shamir, O. & Ullman, S. Graph Approximation and Clustering on a Budget. Artificial Intelligence and Statistics 38, (2015).PDF icon fetaya shamir Ullman 2015.pdf (664.26 KB)
Gerstenberg, T., Goodman, N. D., Lagnado, D. A. & Tenenbaum, J. B. How, whether, why: Causal judgments as counterfactual contrasts. Annual Meeting of the Cognitive Science Society (CogSci) 782-787 (2015). at <https://mindmodeling.org/cogsci2015/papers/0142/index.html>PDF icon GerstenbergEtAl2015-Cogsci.pdf (2.16 MB)
Tsividis, P., Tenenbaum, J. B. & Schulz, L. Hypothesis-Space Constraints in Causal Learning. Annual Meeting of the Cognitive Science Society (CogSci) (2015). at <https://mindmodeling.org/cogsci2015/papers/0418/index.html>PDF icon hypothesis_space_constraints (1).pdf (1.54 MB)
Pagliana, N. & Rosasco, L. Implicit Regularization of Accelerated Methods in Hilbert Spaces. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9591-implicit-regularization-of-accelerated-methods-in-hilbert-spaces.pdf (451.14 KB)
Eric, W., Kevin, W. & Kreiman, G. Learning scene gist with convolutional neural networks to improve object recognition. 2018 52nd Annual Conference on Information Sciences and Systems (CISS) (2018). doi:10.1109/CISS.2018.8362305PDF icon 08362305.pdf (3.17 MB)
Wu, J., Lu, E., Kohli, P., Freeman, W. T. & Tenenbaum, J. B. Learning to See Physics via Visual De-animation. Advances in Neural Information Processing Systems 30 152–163 (2017). at <http://papers.nips.cc/paper/6620-learning-to-see-physics-via-visual-de-animation.pdf>PDF icon Learning to See Physics via Visual De-animation (1.11 MB)
Owens, A., Isola, P., McDermott, J. H., Freeman, W. T. & Torralba, A. Lecture Notes in Computer ScienceComputer Vision – ECCV 2016Ambient Sound Provides Supervision for Visual Learning. 14th European Conference on Computer Vision 801 - 816 (2016). doi:10.1007/978-3-319-46448-010.1007/978-3-319-46448-0_48
Zaslavsky, N., Maldonado, M. & Culbertson, J. Let's talk (efficiently) about us: Person systems achieve near-optimal compression. Proceedings of the Annual Meeting of the Cognitive Science Society 43, (2021).
Tang, H. et al. A machine learning approach to predict episodic memory formation. 2016 Annual Conference on Information Science and Systems (CISS) 539 - 544 (2016). doi:10.1109/CISS.2016.7460560
Stephan, S., Willemsen, P. & Gerstenberg, T. Marbles in inaction: Counterfactual simulation and causation by omission. Proceedings of the 39th Annual Conference of the Cognitive Science Society (2017).PDF icon Marbles in Inaction Counterfactual Simulation and Causation by Omission, Stephan, Willemsen, Gerstenberg, 2017.pdf (1.46 MB)
Dasgupta, I., Bernstein, J., Rolnick, D. & Sompolinsky, H. Markov transitions between attractor states in a recurrent neural network. AAAI (2017).PDF icon aaai-abstract (1).pdf (357.72 KB)
Wu, J. et al. MarrNet: 3D Shape Reconstruction via 2.5D Sketches. Advances in Neural Information Processing Systems 30 540–550 (2017). at <http://papers.nips.cc/paper/6657-marrnet-3d-shape-reconstruction-via-25d-sketches.pdf>PDF icon MarrNet: 3D Shape Reconstruction via 2.5D Sketches (6.25 MB)
Feather, J., Durango, A., Gonzalez, R. & McDermott, J. H. Metamers of neural networks reveal divergence from human perceptual systems. NIPS 2019 (2019). at <https://papers.nips.cc/paper/9198-metamers-of-neural-networks-reveal-divergence-from-human-perceptual-systems>PDF icon Feather_etal_2019_NeurIPS_metamers.pdf (4.7 MB)
Ben-Yosef, G., Assif, L., Harari, D. & Ullman, S. A model for full local image interpretation. Cognitive Science Society (2015).PDF icon Full object interpretation CogSci 2015 Print version.pdf (707.34 KB)
Smith, K. A. et al. Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (2019). at <http: //physadept.csail.mit.edu/>PDF icon ADEPT_NeurIPS.pdf (11.07 MB)
Krafft, P., Baker, C., Pentland, A. & Tenenbaum, J. B. Modeling Human Ad Hoc Coordination. AAAI (2016).PDF icon krafft_aaai2016.pdf (247.58 KB)
Bramley, N., Gerstenberg, T. & Tenenbaum, J. B. Natural science: Active learning in dynamic physical microworlds. 38th Annual Meeting of the Cognitive Science Society (2016).PDF icon Natural Science (Bramley, Gerstenberg, Tenenbaum, 2016).pdf (5.39 MB)
Barbu, A. et al. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9142-objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.pdf (16.31 MB)

Pages