Publication

Export 585 results:
2019
Jozwik, K. M., Lee, M., Marques, T., Schrimpf, M. & Bashivan, P. Large-scale hyperparameter search for predicting human brain responses in the Algonauts challenge. The Algonauts Project: Explaining the Human Visual Brain Workshop 2019 (2019). doi:10.1101/689844
Feather, J., Durango, A., Gonzalez, R. & McDermott, J. H. Metamers of neural networks reveal divergence from human perceptual systems. NIPS 2019 (2019). at <https://papers.nips.cc/paper/9198-metamers-of-neural-networks-reveal-divergence-from-human-perceptual-systems>PDF icon Feather_etal_2019_NeurIPS_metamers.pdf (4.7 MB)
Srivastava, S., Ben-Yosef, G. & Boix, X. Minimal images in deep neural networks: Fragile Object Recognition in Natural Images. International Conference on Learning Representations (ICLR) (2019). at <https://arxiv.org/pdf/1902.03227.pdf>
Ullman, S., Dorfman, N. & Harari, D. A model for discovering ‘containment’ relations. Cognition 183, 67 - 81 (2019).
Smith, K. A. et al. Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (2019). at <http: //physadept.csail.mit.edu/>PDF icon ADEPT_NeurIPS.pdf (11.07 MB)
Bashivan, P., Kar, K. & DiCarlo, J. J. Neural Population Control via Deep Image Synthesis. Science 364, (2019).PDF icon Author's last draft (18.45 MB)
Barbu, A. et al. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9142-objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.pdf (16.31 MB)
Liu, S., Brooks, N. B. & Spelke, E. S. Origins of the concepts cause, cost, and goal in prereaching infants. PNAS (2019). doi:https://doi.org/10.1073/pnas.1904410116PDF icon Author's last draft (2.58 MB)
Liu, S., Brooks, N. B. & Spelke, E. S. Origins of the concepts cause, cost, and goal in prereaching infants. Cognitive Development Society (2019).PDF icon liu_etal_lumi_cds2019_final.pdf (22.95 MB)
Liu, S., McCoy, J. P. & Ullman, T. D. People's perceptions of others’ risk preferences. Cognitive Science Society (2019).PDF icon risk_cogsci_2019_final.pdf (899.8 KB)
Fazeli, N. et al. See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion. Science Robotics 4, eaav3123 (2019).
Isik, L., Mynick, A., Pantazis, D. & Kanwisher, N. The speed of human social interaction perception. BioRxiv (2019). doi:https://doi.org/10.1101/579375
Poggio, T., Banburski, A. & Liao, Q. Theoretical Issues in Deep Networks. (2019).PDF icon CBMM Memo 100 v1 (1.71 MB)PDF icon CBMM Memo 100 v3 (8/25/2019) (1.31 MB)PDF icon CBMM Memo 100 v4 (11/19/2019) (1008.23 KB)
Jozwik, K. M., Schrimpf, M., Kanwisher, N. & DiCarlo, J. J. To find better neural network models of human vision, find better neural network models of primate vision. BioRxiv (2019). at <https://www.biorxiv.org/content/10.1101/688390v1.full>
Patzelt, E. H., Kool, W., Millner, A. J. & Gershman, S. J. The transdiagnostic structure of mental effort avoidance. Scientific Reports 9, (2019).
Jacoby, N. et al. Universal and Non-universal Features of Musical Pitch Perception Revealed by Singing. Current Biology (2019). doi:10.1016/j.cub.2019.08.020
Stephenson, C. et al. Untangling in Invariant Speech Recognition. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9583-untangling-in-invariant-speech-recognition.pdf (2.09 MB)
Ullman, S. Using neuroscience to develop artificial intelligence. Science 363, 692 - 693 (2019).
Han, C., Mao, J., Gan, C., Tenenabum, J. B. & Wu, J. Visual Concept-Metaconcept Learning. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 8745-visual-concept-metaconcept-learning.pdf (1.92 MB)
Kreiman, G. Psychology of Learning and Motivation 70, (2019).
Ellis, K. et al. Write, Execute, Assess: Program Synthesis with a REPL. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9116-write-execute-assess-program-synthesis-with-a-repl.pdf (3.9 MB)

Pages