Publication

Export 638 results:
2019
Ullman, T. D. et al. Draping an Elephant: Uncovering Children's Reasoning About Cloth-Covered Objects. Cognitive Science Society (2019). at <https://mindmodeling.org/cogsci2019/papers/0506/index.html>PDF icon Draping an Elephant: Uncovering Children's Reasoning About Cloth-Covered Objects.pdf (2.62 MB)
Banburski, A. et al. Dynamics & Generalization in Deep Networks -Minimizing the Norm. NAS Sackler Colloquium on Science of Deep Learning (2019).
Zhang, J., Han, Y., Poggio, T. A. & Roig, G. Eccentricity Dependent Neural Network with Recurrent Attention for Scale, Translation and Clutter Invariance . Vision Science Society (2019).
Młynarski, W. & McDermott, J. H. Ecological origins of perceptual grouping principles in the auditory system. Proceedings of the National Academy of Sciences 116, 25355 - 25364 (2019).
Dobs, K. et al. Effects of Face Familiarity in Humans and Deep Neural Networks . European Conference on Visual Perception (2019).
Stemmann, H. & Freiwald, W. A. Evidence for an attentional priority map in inferotemporal cortex. Proceedings of the National Academy of Sciences 116, 23797 - 23805 (2019).
Kar, K., Kubilius, J., Schmidt, K., Issa, E. B. & DiCarlo, J. J. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience (2019). doi:10.1038/s41593-019-0392-5PDF icon Author's last draft (1.74 MB)
Kar, K. & DiCarlo, J. J. Evidence that recurrent pathways between the prefrontal and inferior temporal cortex is critical during core object recognition . Society for Neuroscience (2019).
Ponce, C. R. et al. Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences. Cell 177, 1009 (2019).PDF icon Author's last draft (20.26 MB)
Peterson, M. F. et al. Eye movements and retinotopic tuning in developmental prosopagnosia. Journal of Vision 19, 7 (2019).
Obiajulu, D., Vazquez, Y., Ianni, G. A., Yazdani, F. & Freiwald, W. A. Facial Expression Scoring and Assessment of Facial Movement Kinematics in Non-Human Primates. The Rockefeller University 2019 Summer Science Research Program (SSRP) (2019).
Araya-Polo, M., Adler, A., Farris, S. & Jennings, J. Deep Learning: Algorithms and Applications (SPRINGER-VERLAG, 2019).
Serrino, J., Kleiman-Weiner, M., Parkes, D. C. & Tenenabum, J. B. Finding Friend and Foe in Multi-Agent Games. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon Max KW paper.pdf (928.96 KB)
Gershman, S. J. The Generative Adversarial Brain. Frontiers in Artificial Intelligence 2, (2019).
Liu, S., Cushman, F. A., Gershman, S. J., Kool, W. & Spelke, E. S. Hard choices: Children’s understanding of the cost of action selection. . Cognitive Science Society (2019).PDF icon phk_cogsci_2019_final.pdf (276.14 KB)
Sanders, H., Wilson, M. A. & Gershman, S. J. Hippocampal Remapping as Hidden State Inference. (2019). doi:https://doi.org/10.1101/743260PDF icon CBMM-Memo-101.pdf (12.78 MB)
Leonard, J. A., Garcia, A. & Schulz, L. E. How Adults’ Actions, Outcomes, and Testimony Affect Preschoolers’ Persistence. Child Development (2019). doi:10.1111/cdev.13305
Idiart, M. A. P., Villavicencio, A., Katz, B., Rennó-Costa, C. & Lisman, J. How Does the Brain Represents Language and Answers Questions? Using an AI System to Understand the Underlying Neurobiological Mechanisms. Frontiers in Computational Neuroscience 13, (2019).
Dobs, K., Isik, L., Pantazis, D. & Kanwisher, N. How face perception unfolds over time. Nature Communications 10, (2019).
Gershman, S. J. How to never be wrong. Psychonomic Bulletin & Review 26, 13 - 28 (2019).
Harrod, J., Purdon, P. L., Brown, E. N. & Flores, F. J. Identification of vigilance states in freely behaving animals using thalamocortical activity and Deep Belief networks. Society for Neuroscience (2019).
McWalter, R. & McDermott, J. H. Illusory sound texture reveals multi-second statistical completion in auditory scene analysis. Nature Communications 10, (2019).
Pagliana, N. & Rosasco, L. Implicit Regularization of Accelerated Methods in Hilbert Spaces. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9591-implicit-regularization-of-accelerated-methods-in-hilbert-spaces.pdf (451.14 KB)
Betta, I. Dalla et al. In silico modeling of temporally interfering electric fields for deep brain stimulation . Society for Neuroscience (2019).
Patzelt, E. H., Kool, W., Millner, A. J. & Gershman, S. J. Incentives Boost Model-Based Control Across a Range of Severity on Several Psychiatric Constructs. Biological Psychiatry 85, 425 - 433 (2019).

Pages