Export 718 results:
Villalobos, K. M. et al. Do Neural Networks for Segmentation Understand Insideness?. (2020).PDF icon CBMM-Memo-105.pdf (4.63 MB)PDF icon CBMM Memo 105 v2 (July 2, 2020) (3.2 MB)
Banburski, A. et al. Dreaming with ARC. Learning Meets Combinatorial Algorithms workshop at NeurIPS 2020 (2020).PDF icon CBMM Memo 113.pdf (1019.64 KB)
Yildirim, I., Belledonne, M., Freiwald, W. A. & Tenenbaum, J. B. Efficient inverse graphics in biological face processing. Science Advances 6, eaax5979 (2020).PDF icon eaax5979.full_.pdf (3.22 MB)
Zaslavsky, N., Hu, J. & Levy, R. Emergence of Pragmatic Reasoning From Least-Effort Optimization . 13th International Conference on the Evolution of Language (EvoLang) (2020).
Kuo, Y. - L., Katz, B. & Barbu, A. Encoding formulas as deep networks: Reinforcement learning for zero-shot execution of LTL formulas. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020). doi:10.1109/IROS45743.2020.9341325
Kar, K. & DiCarlo, J. J. Evidence that recurrent pathways between the prefrontal and inferior temporal cortex is critical during core object recognition . COSYNE (2020).
Shalev-Shwartz, S. & Shashua, A. An Exit Strategy from the Covid-19 Lockdown based on Risk-sensitive Resource Allocation. (2020).PDF icon CBMM-Memo-106.pdf (431.13 KB)
Schaeffer, D. J. et al. Face selective patches in marmoset frontal cortexAbstract. Nature Communications 11, (2020).
Kar, K. & DiCarlo, J. J. Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Neuron (2020). doi:10.1016/j.neuron.2020.09.035PDF icon PIIS0896627320307595.pdf (3.92 MB)
Smith, K. et al. The fine structure of surprise in intuitive physics: when, why, and how much?. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020 (Denison, S., Mack, M., Xu, Y. & Armstrong, B. C.) (2020). at <>
Rangamani, A., Rosasco, L. & Poggio, T. For interpolating kernel machines, the minimum norm ERM solution is the most stable. (2020).PDF icon CBMM_Memo_108.pdf (1015.14 KB)PDF icon Better bound (without inequalities!) (1.03 MB)
Mhaskar, H. & Poggio, T. Function approximation by deep networks. Communications on Pure & Applied Analysis 19, 4085 - 4095 (2020).PDF icon 1534-0392_2020_8_4085.pdf (514.57 KB)
Freiwald, W. A. Gross means Great. Progress in Neurobiology 195, 101924 (2020).
Marques, T., Schrimpf, M. & DiCarlo, J. J. Hierarchical neural network models that more closely match primary visual cortex tend to better explain higher level visual cortical responses . COSYNE (2020).
Bill, J., Pailian, H., Gershman, S. J. & Drugowitsch, J. Hierarchical structure is employed by humans during visual motion perception. Proceedings of the National Academy of Sciences 117, 24581 - 24589 (2020).
Deza, A., Liao, Q., Banburski, A. & Poggio, T. Hierarchically Local Tasks and Deep Convolutional Networks. (2020).PDF icon CBMM_Memo_109.pdf (2.12 MB)
Sanders, H., Wilson, M. A. & Gershman, S. J. Hippocampal remapping as hidden state inference. eLife 9, (2020).
Poggio, T. & Liao, Q. Implicit dynamic regularization in deep networks. (2020).PDF icon TPR_ver2.pdf (2.29 MB)PDF icon Substantial edits (1.52 MB)PDF icon Edits that are extensive but minor in content (1.98 MB)PDF icon Extending theory, setting a post (2 MB)PDF icon Fine tuning (2.01 MB)PDF icon Corrections in Appendix about Neural Collapse (2.01 MB)PDF icon Small edits clarifying role of weight decay (2.39 MB)PDF icon Added: prove NC for multiclass+theorem on connected global minima (2.4 MB)
Vinken, K., Boix, X. & Kreiman, G. Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception. Science Advances 6, eabd4205 (2020).PDF icon gk7967.pdf (3.07 MB)
Thomas, A. J., Saxe, R. & Spelke, E. S. Infants represent 'like-kin' affiliation . Budapest Conference on Cognitive Development (2020).
Dillon, M. R., Izard, V. & Spelke, E. S. Infants’ sensitivity to shape changes in 2D visual forms. Infancy 25, 618 - 639 (2020).
Rajalingham, R., Kar, K., Sanghavi, S., Dehaene, S. & DiCarlo, J. J. The inferior temporal cortex is a potential cortical precursor of orthographic processing in untrained monkeys. Nature Communications 11, (2020).PDF icon s41467-020-17714-3.pdf (25.01 MB)
Schrimpf, M. et al. Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence. Neuron 108, 413 - 423 (2020).
Wang, C., Ross, C., Kuo, Y. - L., Katz, B. & Barbu, A. Learning a Natural-language to LTL Executable Semantic Parser for Grounded Robotics. (Proceedings of Conference on Robot Learning (CoRL-2020), 2020). at <>
Tian, L., Ellis, K., Kryven, M. & Tenenbaum, J. B. Learning abstract structure for drawing by efficient motor program induction. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020). at <>