Export 782 results:
McNamee, D., Stachenfeld, K., Botvinick, M. M. & Gershman, S. J. Flexible modulation of sequence generation in the entorhinal-hippocampal system. Nature Neuroscience (2021). doi:10.1038/s41593-021-00831-7
Casper, S. et al. Frivolous Units: Wider Networks Are Not Really That Wide. AAAI 2021 (2021). at <>PDF icon 1912.04783.pdf (6.69 MB)
Poggio, T. From Associative Memories to Powerful Machines. (2021).PDF icon CBMM-Memo-114.pdf (1.01 MB)PDF icon The appendix is now a set of old and new remarks on topics that are not always related to the memo. (3.88 MB)
Poggio, T. A. From Marr’s Vision to the Problem of Human Intelligence. (2021).PDF icon CBMM-Memo-118.pdf (362.19 KB)
Wang, B. & Ponce, C. R. A Geometric Analysis of Deep Generative Image Models and Its Applications. Proc. International Conference on Learning Representations, 2021 (2021).
Sani, I. et al. The human endogenous attentional control network includes a ventro-temporal cortical node. Nature Communications 12, (2021).
Yang, S., Bill, J., Drugowitsch, J. & Gershman, S. J. Human visual motion perception shows hallmarks of Bayesian structural inference. Scientific Reports 11, (2021).
Zhang, M., Badkundri, R., Talbot, M. B., Zawar, R. & Kreiman, G. Hypothesis-driven Online Video Stream Learning with Augmented Memory. arXiv (2021). doi:10.48550/arXiv.2104.02206PDF icon 2104.02206.pdf (2.25 MB)
Ullman, S. et al. Image interpretation by iterative bottom-up top- down processing. (2021).PDF icon CBMM-Memo-120.pdf (2.83 MB)
Yang, Z. & Freiwald, W. A. Joint encoding of facial identity, orientation, gaze, and expression in the middle dorsal face areaSignificance. Proceedings of the National Academy of Sciences 118, (2021).
Conwell, C. et al. Large-scale benchmarking of deep neural network models in mouse visual cortex reveals patterns similar to those observed in macaque visual cortex. Cosyne (2021).
Zaslavsky, N., Maldonado, M. & Culbertson, J. Let's talk (efficiently) about us: Person systems achieve near-optimal compression. Proceedings of the Annual Meeting of the Cognitive Science Society 43, (2021).
Anzellotti, S., Houlihan, S. D., Liburd, S. & Saxe, R. Leveraging facial expressions and contextual information to investigate opaque representations of emotions. Emotion (2021). doi:10.1037/emo0000685
Weisholtz, D. S. et al. Localized task-invariant emotional valence encoding revealed by intracranial recordingsAbstract. Social Cognitive and Affective Neuroscience (2021). doi:10.1093/scan/nsab134
Ross, C., Barbu, A. & Katz, B. Measuring Social Biases in Grounded Vision and Language Embeddings. (2021).PDF icon CBMM-Memo-126.pdf (1.32 MB)
Ross, C., Katz, B. & Barbu, A. Measuring Social Biases in Grounded Vision and Language Embeddings. NAACL (Annual Conference of the North American Chapter of the Association for Computational Linguistics) (2021).
Dasgupta, I. & Gershman, S. J. Memory as a Computational Resource. Trends in Cognitive Sciences 25, 240 - 251 (2021).
Wang, J., Tao, A., Anderson, W. S., Madsen, J. R. & Kreiman, G. Mesoscopic physiological interactions in the human brain reveal small-world properties. Cell Reports 36, 109585 (2021).
Allen, K. et al. Meta-strategy learning in physical problem solving: the effect of embodied experience. bioRxiv (2021).PDF icon 2021.07.08.451333v2.full_.pdf (3.05 MB)
Sosa, F. A., Ullman, T., Tenenbaum, J. B., Gershman, S. J. & Gerstenberg, T. Moral dynamics: Grounding moral judgment in intuitive physics and intuitive psychology. Cognition 217, 104890 (2021).
Yaari, A. Uri et al. Multi-resolution modeling of a discrete stochastic process identifies causes of cancer. International Conference on Learning Representations (2021). at <>
Marques, T., Schrimpf, M. & DiCarlo, J. J. Multi-scale hierarchical neural network models that bridge from single neurons in the primate primary visual cortex to object recognition behavior. bioRxiv (2021).PDF icon 2021.03.01.433495v2.full_.pdf (3.23 MB)
Tomov, M. S., Schulz, E. & Gershman, S. J. Multi-task reinforcement learning in humans. Nature Human Behaviour (2021). doi:10.1038/s41562-020-01035-y
Schrimpf, M. et al. The neural architecture of language: Integrative modeling converges on predictive processing. Proceedings of the National Academy of Sciences 118, e2105646118 (2021).
Houlihan, S. Dae, Tenenbaum, J. B. & Saxe, R. The Neural Basis of Mentalizing: Linking Models of Theory of Mind and Measures of Human Brain Activity. 209 - 235 (Springer International Publishing, 2021). doi:10.1007/978-3-030-51890-510.1007/978-3-030-51890-5_11