Publication
System Identification of Neural Systems: If We Got It Right, Would We Know?. Proceedings of the 40th International Conference on Machine Learning, PMLR 202, 12430-12444 (2023).
han23d.pdf (797.48 KB)
NSF Science and Technology Centers – The Class of 2013. (2013).
NSFGender2013_poster.pdf (2.77 MB)
Word-level Invariant Representations From Acoustic Waveforms. INTERSPEECH 2014 - 15th Annual Conf. of the International Speech Communication Association (International Speech Communication Association (ISCA), 2014). at <http://www.isca-speech.org/archive/interspeech_2014/i14_2385.html>
Representation Learning from Orbit Sets for One-shot Classification. AAAI Spring Symposium Series, Science of Intelligence (2017). at <https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15357>
Properties of invariant object recognition in human oneshot learning suggests a hierarchical architecture different from deep convolutional neural networks . Vision Science Society (2019). doi:10.1167/19.10.28d
Properties of invariant object recognition in human one-shot learning suggests a hierarchical architecture different from deep convolutional neural networks. Vision Science Society (2019).
Phone Classification by a Hierarchy of Invariant Representation Layers. INTERSPEECH 2014 - 15th Annual Conf. of the International Speech Communication Association (International Speech Communication Association (ISCA), 2014). at <http://www.isca-speech.org/archive/interspeech_2014/i14_2346.html>
Norm-based Generalization Bounds for Sparse Neural Networks. NeurIPS 2023 (2023). at <https://proceedings.neurips.cc/paper_files/paper/2023/file/8493e190ff1bbe3837eca821190b61ff-Paper-Conference.pdf>
NeurIPS-2023-norm-based-generalization-bounds-for-sparse-neural-networks-Paper-Conference.pdf (577.69 KB)
Learning with Group Invariant Features: A Kernel Perspective. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5798-learning-with-group-invariant-features-a-kernel-perspective>
LearningInvarianceKernel_NIPS2015.pdf (292.18 KB)
Learning with a Wasserstein Loss. Advances in Neural Information Processing Systems (NIPS 2015) 28 (2015). at <http://arxiv.org/abs/1506.05439>
Learning with a Wasserstein Loss_1506.05439v2.pdf (2.57 MB)
Learning manifolds with k-means and k-flats. Advances in Neural Information Processing Systems 25 (NIPS 2012) (2012). at <https://papers.nips.cc/paper/2012/hash/b20bb95ab626d93fd976af958fbc61ba-Abstract.html>
Learning invariant representations and applications to face verification. NIPS 2013 (Advances in Neural Information Processing Systems 26, 2014). at <http://nips.cc/Conferences/2013/Program/event.php?ID=4074>
Liao_Leibo_Poggio_NIPS_2013.pdf (687.06 KB)
Is the Human Visual System Invariant to Translation and Scale?. AAAI Spring Symposium Series, Science of Intelligence (2017).
How Important Is Weight Symmetry in Backpropagation?. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (2016). at <https://cbmm.mit.edu/sites/default/files/publications/liao-leibo-poggio.pdf>
How Important Is Weight Symmetry in Backpropagation?. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (Association for the Advancement of Artificial Intelligence, 2016).
liao-leibo-poggio.pdf (191.91 KB)
Holographic Embeddings of Knowledge Graphs. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (2016).
1510.04935v2.pdf (360.65 KB)
Eccentricity Dependent Neural Network with Recurrent Attention for Scale, Translation and Clutter Invariance . Vision Science Society (2019).
Eccentricity Dependent Deep Neural Networks: Modeling Invariance in Human Vision. AAAI Spring Symposium Series, Science of Intelligence (2017). at <https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15360>
paper.pdf (963.87 KB)
Dynamics & Generalization in Deep Networks -Minimizing the Norm. NAS Sackler Colloquium on Science of Deep Learning (2019).
Discriminative Template Learning in Group-Convolutional Networks for Invariant Speech Representations. INTERSPEECH-2015 (International Speech Communication Association (ISCA), 2015). at <http://www.isca-speech.org/archive/interspeech_2015/i15_3229.html>
A Deep Representation for Invariance and Music Classification. ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2014). doi:10.1109/ICASSP.2014.6854954
Deep Recurrent Architectures for Seismic Tomography. 81st EAGE Conference and Exhibition 2019 (2019).
]