Publication
Export 155 results:
Filters: Author is Tomaso Poggio [Clear All Filters]
Eccentricity Dependent Neural Network with Recurrent Attention for Scale, Translation and Clutter Invariance . Vision Science Society (2019).
Properties of invariant object recognition in human one-shot learning suggests a hierarchical architecture different from deep convolutional neural networks. Vision Science Society (2019).
Properties of invariant object recognition in human oneshot learning suggests a hierarchical architecture different from deep convolutional neural networks . Vision Science Society (2019). doi:10.1167/19.10.28d
Theoretical Issues in Deep Networks. (2019).
CBMM Memo 100 v1 (1.71 MB)
CBMM Memo 100 v3 (8/25/2019) (1.31 MB)
CBMM Memo 100 v4 (11/19/2019) (1008.23 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Theories of Deep Learning: Approximation, Optimization and Generalization . TECHCON 2019 (2019).
An analysis of training and generalization errors in shallow and deep networks. (2018).
CBMM-Memo-076.pdf (772.61 KB)
CBMM-Memo-076v2.pdf (2.67 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Biologically-plausible learning algorithms can scale to large datasets. (2018).
CBMM-Memo-092.pdf (1.31 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Can Deep Neural Networks Do Image Segmentation by Understanding Insideness?. (2018).
CBMM-Memo-095.pdf (1.96 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Classical generalization bounds are surprisingly tight for Deep Networks. (2018).
CBMM-Memo-091.pdf (1.43 MB)
CBMM-Memo-091-v2.pdf (1.88 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
A fast, invariant representation for human action in the visual system. Journal of Neurophysiology (2018). doi:https://doi.org/10.1152/jn.00642.2017
Invariant Recognition Shapes Neural Representations of Visual Input. Annual Review of Vision Science 4, 403 - 422 (2018).
annurev-vision-091517-034103.pdf (1.55 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Single units in a deep neural network functionally correspond with neurons in the brain: preliminary results. (2018).
CBMM-Memo-093.pdf (2.99 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Theory I: Deep networks and the curse of dimensionality. Bulletin of the Polish Academy of Sciences: Technical Sciences 66, (2018).
02_761-774_00966_Bpast.No_.66-6_28.12.18_K1.pdf (1.18 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Theory II: Deep learning and optimization. Bulletin of the Polish Academy of Sciences: Technical Sciences 66, (2018).
03_775-788_00920_Bpast.No_.66-6_31.12.18_K2.pdf (5.43 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Theory III: Dynamics and Generalization in Deep Networks. (2018).
Original, intermediate versions are available under request (2.67 MB)
CBMM Memo 90 v12.pdf (4.74 MB)
Theory_III_ver44.pdf Update Hessian (4.12 MB)
Theory_III_ver48 (Updated discussion of convergence to max margin) (2.56 MB)
fixing errors and sharpening some proofs (2.45 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Compression of Deep Neural Networks for Image Instance Retrieval. (2017). at <https://arxiv.org/abs/1701.04923>
1701.04923.pdf (614.33 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Do Deep Neural Networks Suffer from Crowding?. (2017).
CBMM-Memo-069.pdf (6.47 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Eccentricity Dependent Deep Neural Networks for Modeling Human Vision. Vision Sciences Society (2017).
Eccentricity Dependent Deep Neural Networks: Modeling Invariance in Human Vision. AAAI Spring Symposium Series, Science of Intelligence (2017). at <https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15360>
paper.pdf (963.87 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
A fast, invariant representation for human action in the visual system. J Neurophysiol jn.00642.2017 (2017). doi:10.1152/jn.00642.2017
Author's last draft (695.63 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Fisher-Rao Metric, Geometry, and Complexity of Neural Networks. arXiv.org (2017). at <https://arxiv.org/abs/1711.01530>
1711.01530.pdf (966.99 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
On the Human Visual System Invariance to Translation and Scale. Vision Sciences Society (2017).
Is the Human Visual System Invariant to Translation and Scale?. AAAI Spring Symposium Series, Science of Intelligence (2017).