Publication

Export 668 results:
2020
Schrimpf, M., Sato, F., Sanghavi, S. & DiCarlo, J. J. Temporal information for action recognition only needs to be integrated at a choice level in neural networks and primates . COSYNE (2020).
Poggio, T., Banburski, A. & Liao, Q. Theoretical issues in deep networks. Proceedings of the National Academy of Sciences 201907369 (2020). doi:10.1073/pnas.1907369117PDF icon PNASlast.pdf (915.3 KB)
Dasgupta, I., Schulz, E., Tenenbaum, J. B. & Gershman, S. J. A theory of learning to infer. Psychological Review 127, 412 - 441 (2020).
Gen, C. et al. ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv (2020). at <https://arxiv.org/abs/2007.04954>PDF icon 2007.04954.pdf (7.06 MB)
Schwartz, J. et al. ThreeDWorld (TDW): A High-Fidelity, Multi-Modal Platform for Interactive Physical Simulation. (2020). at <http://www.threedworld.org/>
Eisape, T., Levy, R., Tenenabum, J. B. & Zaslavsky, N. Toward human-like object naming in artificial neural systems . International Conference on Learning Representations (ICLR 2020), Bridging AI and Cognitive Science workshop (2020).
Dobs, K., Kell, A. J. E., Martinez, J., Cohen, M. & Kanwisher, N. Using task-optimized neural networks to understand why brains have specialized processing for faces . Computational and Systems Neurosciences (2020).
Ben-Yosef, G., Kreiman, G. & Ullman, S. What can human minimal videos tell us about dynamic recognition models?. International Conference on Learning Representations (ICLR 2020) (2020). at <https://baicsworkshop.github.io/pdf/BAICS_1.pdf>PDF icon Authors' final version (516.09 KB)
Dobs, K., Kell, A. J. E., Martinez, J., Cohen, M. & Kanwisher, N. Why Are Face and Object Processing Segregated in the Human Brain? Testing Computational Hypotheses with Deep Convolutional Neural Networks . Conference on Cognitive Computational Neuroscience (2020).
Xiao, W. & Kreiman, G. XDream: Finding preferred stimuli for visual neurons using generative networks and gradient-free optimization. PLOS Computational Biology 16, e1007973 (2020).PDF icon gk7791.pdf (2.39 MB)
2019
Zhang, Y., Marciniak, K. & Freiwald, W. A. Analysis of Macaque Monkeys’ Social and Physical Interaction Processing with Eye tracking Data. The Rockefeller University 2019 Summer Science Research Program (SSRP) (2019).
Mhaskar, H. N. & Poggio, T. An analysis of training and generalization errors in shallow and deep networks. (2019).PDF icon CBMM-Memo-098.pdf (687.36 KB)PDF icon CBMM Memo 098 v4 (08/2019) (2.63 MB)
Jozwik, K. M., Lee, H., Kanwisher, N. & DiCarlo, J. J. Are topographic deep convolutional neural networks better models of the ventral visual stream?. Conference on Cognitive Computational Neuroscience (2019).
Muecke, N., Neu, G. & Rosasco, L. Beating SGD Saturation with Tail-Averaging and Minibatching. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9422-beating-sgd-saturation-with-tail-averaging-and-minibatching.pdf (389.35 KB)
Xiao, W., Chen, H., Liao, Q. & Poggio, T. Biologically-plausible learning algorithms can scale to large datasets. International Conference on Learning Representations, (ICLR 2019) (2019).PDF icon gk7779.pdf (721.53 KB)
Adler, A. & Wax, M. Blind Constant Modulus Multiuser Detection via Low-Rank Approximation. IEEE Signal Processing Letters 1 - 1 (2019). doi:10.1109/LSP.9710.1109/LSP.2019.2918001
Adler, A., Wax, M. & Pantazis, D. Brain Signals Localization by Alternating Projections. arXiv (2019).PDF icon CBMM-Memo-099.pdf (421.67 KB)
Kubilius, J. et al. Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 2019-10-28 NeurIPS-camera_ready.pdf (1.88 MB)
Kryven, M., Niemi, L., Paul, L. & Tenenbaum, J. B. Choosing a Transformative Experience . Cognitive Sciences Society (2019).
Adler, A. & Wax, M. Constant modulus algorithms via low-rank approximation. Signal Processing 160, 263 - 270 (2019).
Lewis, O. & Hermann, K. Data for free: Fewer-shot algorithm learning with parametricity data augmentation. ICLR 2019 (2019).
Kuo, Y. - L., Katz, B. & Barbu, A. Deep Compositional Robotic Planners that Follow Natural Language Commands. Workshop on Visually Grounded Interaction and Language (ViGIL) at the Thirty-third Annual Conference on Neural Information Processing Systems (NeurIPS), (2019). at <https://vigilworkshop.github.io/>
Kell, A. J. E. & McDermott, J. H. Deep neural network models of sensory systems: windows onto the role of task constraints. Current Opinion in Neurobiology 55, 121 - 132 (2019).
Adler, A., Araya-Polo, M. & Poggio, T. Deep Recurrent Architectures for Seismic Tomography. 81st EAGE Conference and Exhibition 2019 (2019).
Barbu, A., Banda, D. & Katz, B. Deep video-to-video transformations for accessibility with an application to photosensitivity. Pattern Recognition Letters (2019). doi:10.1016/j.patrec.2019.01.019

Pages