Publication

Export 556 results:
2018
Liao, Q., Miranda, B., Hidary, J. & Poggio, T. Classical generalization bounds are surprisingly tight for Deep Networks. (2018).PDF icon CBMM-Memo-091.pdf (1.43 MB)PDF icon CBMM-Memo-091-v2.pdf (1.88 MB)
Sliwa, J., Marvel, S. R., Ianni, G. A. & Freiwald, W. A. Comparing human and monkey neural circuits for processing social scenes. Société Francophone de Primatologie (SFDP) Annual Meeting, Paris, France (2018).
Sliwa, J., Marvel, S. R., Ianni, G. A. & Freiwald, W. A. Comparing human and monkey neural circuits for processing social scenes. Social & Affective Neuroscience Society (SANS) (2018). at <http://www.socialaffectiveneuro.org/conferences.html>
Sliwa, J., Marvel, S. R., Ianni, G. A. & Freiwald, W. A. Comparing human and monkey neural circuits for processing social scenes. Cognitive Neuroscience Society Annual Meeting (CNS), Boston, MA (2018).
Zisselman, E., Adler, A. & Elad, M. Handbook of Numerical Analysis 19, 3 - 17 (Elsevier, 2018).
Dehghani, N. & Wimmer, R. A computational perspective of the role of Thalamus in cognition. arxiv (2018). at <https://arxiv.org/abs/1803.00997>PDF icon ThalamusComputationArxiv.pdf (5.12 MB)
Adler, A. & Wax, M. Constant Modulus Algorithms via Low-Rank Approximation. (2018).PDF icon CBMM-Memo-077.pdf (795.61 KB)
Adler, A. & Wax, M. Constant Modulus Beamforming Via Low-Rank Approximation. 2018 IEEE Statistical Signal Processing Workshop (SSP) (2018). doi:10.1109/SSP.2018.8450799
Mlynarski, W. & McDermott, J. H. Co-occurrence statistics of natural sound features predict perceptual grouping. Computational and Systems Neuroscience (Cosyne) 2018 (2018).
Mlynarski, W. & McDermott, J. H. Co-occurrence statistics of natural sound features predict perceptual grouping. Computational and Systems Neuroscience (COSYNE) (2018). at <http://www.cosyne.org/c/index.php?title=Cosyne_18>
Livingstone, M. S., Arcaro, M. J. & Schade, P. F. Cortex Is Cortex: Ubiquitous Principles Drive Face-Domain Development. Trends in Cognitive Sciences (2018). doi:10.1016/j.tics.2018.10.009PDF icon 1-s2.0-S1364661318302572-main.pdf (260.4 KB)
Yuille, A. & Liu, C. Deep Nets: What have they ever done for Vision?. (2018).PDF icon CBMM-Memo-088.pdf (7.88 MB)
Shen, W. et al. Deep Regression Forests for Age Estimation. (2018).PDF icon CBMM-Memo-085.pdf (2.2 MB)
Kuo, Y. - L., Barbu, A. & Katz, B. Deep sequential models for sampling-based planning. The IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018) (2018). doi:10.1109/IROS.2018.8593947PDF icon kuo2018planning.pdf (637.67 KB)
Araya-Polo, M., Jennings, J., Adler, A. & Dahlke, T. Deep-learning tomography. The Leading Edge 37, 58 - 66 (2018).PDF icon TLE2018.pdf (1.9 MB)
Zhang, Z., Xie, C., Wang, J., Xie, L. & Yuille, A. DeepVoting: A Robust and Explainable Deep Network for Semantic Part Detection under Partial Occlusion. (2018).PDF icon CBMM-Memo-083.pdf (2.32 MB)
Zhang, Z., Xie, C., Wang, J., Xie, L. & Yuille, A. DeepVoting: An Explainable Framework for Semantic Part Detection under Partial Occlusion. Conference on Computer Vision and Pattern Recognition (CVPR) (2018). at <http://cvpr2018.thecvf.com/>
Toussaint, M., Allen, K., Smith, K. A. & Tenenbaum, J. B. Differentiable physics and stable modes for tool-use and manipulation planning. Robotics: Science and Systems 2018 (2018).PDF icon ToussaintEtAl_DiffPhysStable.pdf (1.97 MB)
Harari, D., Tenenbaum, J. B. & Ullman, S. Discovery and usage of joint attention in images. arXiv.org (2018). at <https://arxiv.org/abs/1804.04604>PDF icon 1804.04604v1.pdf (488.85 KB)
Meyers, E. Dynamic population coding and its relationship to working memory. Journal of Neurophysiology 120, 2260 - 2268 (2018).
Yildirim, I., Freiwald, W. A. & J., T. Efficient inverse graphics in biological face processing. bioRxiv (2018). at <https://www.biorxiv.org/content/early/2018/04/02/282798>
Belbute-Peres, Fde Avila, Smith, K. A., Allen, K., Tenenbaum, J. B. & Kolter, Z. End-to-end differentiable physics for learning and control. Advances in Neural Information Processing Systems 31 (NIPS 2018) (2018).PDF icon 7948-end-to-end-differentiable-physics-for-learning-and-control.pdf (794.17 KB)
Isik, L., Tacchetti, A. & Poggio, T. A fast, invariant representation for human action in the visual system. Journal of Neurophysiology (2018). doi:https://doi.org/10.1152/jn.00642.2017
Zhang, M. et al. Finding any Waldo with zero-shot invariant and efficient visual search. Nature Communications 9, (2018).
Dillon, M. R. & Spelke, E. S. From Map Reading to Geometric Intuitions. Developmental Psychology (2018). doi:http://dx.doi.org/10.1037/dev0000509

Pages