Publication

Found 904 results
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
O
Owaki, T. et al. Searching for visual features that explain response variance of face neurons in inferior temporal cortex. PLOS ONE 13, e0201192 (2018).
Owens, A., Isola, P., McDermott, J. H., Freeman, W. T. & Torralba, A. Lecture Notes in Computer ScienceComputer Vision – ECCV 2016Ambient Sound Provides Supervision for Visual Learning. 14th European Conference on Computer Vision 801 - 816 (2016). doi:10.1007/978-3-319-46448-010.1007/978-3-319-46448-0_48
Owens, A. et al. Visually indicated sounds. Conference on Computer Vision and Pattern Recognition (2016).PDF icon Owens_etal_2016_visually_indicated_sounds_CVPR.pdf (7.57 MB)
P
Pagliana, N. & Rosasco, L. Implicit Regularization of Accelerated Methods in Hilbert Spaces. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9591-implicit-regularization-of-accelerated-methods-in-hilbert-spaces.pdf (451.14 KB)
Palepu, A. & Kreiman, G. Development of automated interictal spike detector. 40th International Conference of the IEEE Engineering in Medicine and Biology Society - EMBC 2018 (2018). at <https://embc.embs.org/2018/>
Palmer, I., Rouditchenko, A., Barbu, A., Katz, B. & Glass, J. Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset. (2021).PDF icon CBMM-Memo-128.pdf (2.91 MB)
Palmer, I., Rouditchenko, A., Barbu, A., Katz, B. & Glass, J. Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset. Interspeech 2021 (2021). doi:10.21437/Interspeech.2021
Patzelt, E. H., Kool, W., Millner, A. J. & Gershman, S. J. Incentives Boost Model-Based Control Across a Range of Severity on Several Psychiatric Constructs. Biological Psychiatry 85, 425 - 433 (2019).
Patzelt, E. H., Kool, W., Millner, A. J. & Gershman, S. J. The transdiagnostic structure of mental effort avoidance. Scientific Reports 9, (2019).
Paul, R., Barbu, A., Felshin, S., Katz, B. & Roy, N. Temporal Grounding Graphs for Language Understanding with Accrued Visual-Linguistic Context. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI 2017) (2017). at <c>
Penagos, H., Varela, C. & Wilson, M. A. Oscillations, neural computations and learning during wake and sleep. Current Opinion in Neurobiology 44C, (2017).
Peres, F., Smith, K. A. & Tenenbaum, J. B. Rapid Physical Predictions from Convolutional Neural Networks. Neural Information Processing Systems, Intuitive Physics Workshop (2016). at <http://phys.csail.mit.edu/papers/9.pdf>PDF icon Rapid Physical Predictions - NIPS Physics Workshop Poster (1.47 MB)
Peters, B. et al. How does the primate brain combine generative and discriminative computations in vision?. arXiv (2024). at <https://arxiv.org/abs/2401.06005>
Peterson, M. F. et al. Eye movements and retinotopic tuning in developmental prosopagnosia. Journal of Vision 19, 7 (2019).
Peterson, M. F., Lin, J., Zaun, I. & Kanwisher, N. Individual differences in face-looking behavior generalize from the lab to the world. Journal of Vision (2016).
Peterson, M. F., Lin, J., Zaun, I. & Kanwisher, N. Individual Differences in Face Looking Behavior Generalize from the Lab to the World. Journal of Vision 16, (2016).PDF icon Real World Face Fixations, Journal of Vision article, 2016 (20.25 MB)
Peyrache, A. et al. Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep. Proceedings of the National Academy of Sciences (2012). doi:10.1073/pnas.1109895109PDF icon SpatiotemporalDynamic.pdf (2.56 MB)
Phillips-Jones, T., Coronel, S. Otero, Sani, I. & Freiwald, W. A. A Virtual Reality Experimental Approach for Studying How the Brain Implements Attentive Behaviors. Tri-Institute 2019 Gateways to the Laboratory Summer Program (2019).
Pinto, A., Rangamani, A. & Poggio, T. On Generalization Bounds for Neural Networks with Low Rank Layers. (2024).PDF icon CBMM-Memo-151.pdf (697.31 KB)
Poggio, T. A. & Xu, M. On efficiently computable functions, deep networks and sparse compositionality. (2025).PDF icon Deep_sparse_networks_approximate_efficiently_computable_functions.pdf (223.15 KB)
Poggio, T., Rosasco, L., Shashua, A., Cohen, N. & Anselmi, F. Notes on Hierarchical Splines, DCLNs and i-theory. (2015).PDF icon CBMM Memo 037 (1.83 MB)
Poggio, T., Liao, Q. & Xu, M. Implicit dynamic regularization in deep networks. (2020).PDF icon v1.2 (2.29 MB)PDF icon v.59 Update on rank (2.43 MB)
Poggio, T. Stable Foundations for Learning: a framework for learning theory (in both the classical and modern regime). (2020).PDF icon Original file (584.54 KB)PDF icon Corrected typos and details of "equivalence" CV stability and expected error for interpolating machines. Added Appendix on SGD.  (905.29 KB)PDF icon Edited Appendix on SGD. (909.19 KB)PDF icon Deleted Appendix. Corrected typos etc (880.27 KB)PDF icon Added result about square loss and min norm (898.03 KB)
Poggio, T., Liao, Q. & Banburski, A. Complexity Control by Gradient Descent in Deep Networks. Nature Communications 11, (2020).PDF icon s41467-020-14663-9.pdf (431.68 KB)
Poggio, T. Is Research in Intelligence an Existential Risk?. (2014).PDF icon Is Research in Intelligence an Existential Risk.pdf (571.42 KB)

Pages