Export 653 results:
Isik, L., Meyers, E., Leibo, J. Z. & Poggio, T. The dynamics of invariant object recognition in the human visual system. (2014). doi:
Isik, L., Meyers, E., Leibo, J. Z. & Poggio, T. The dynamics of invariant object recognition in the human visual system. J Neurophysiol 111, 91-102 (2014).
Stern, M., Sompolinsky, H. & Abbott, L. F. Dynamics of random neural networks with bistable units. Phys Rev E Stat Nonlin Soft Matter Phys 90, (2014).
Yildirim, I., Kulkarni, T., Freiwald, W. A. & Tenenbaum, J. B. Explaining Monkey Face Patch System as Efficient Analysis-by-Synthesis. (2014).PDF icon yildirimetal_cosyne15.pdf (313.57 KB)
Deen, B., Kanwisher, N. & Saxe, R. Exploring the functional organization of the superior temporal sulcus with a broad set of naturalistic stimuli. (2014).
Linderman, S. W., Stock, C. & Adams, R. A framework for studying synaptic plasticity with neural spike train data. Neural Information Processing Systems (2014).PDF icon 5274-a-framework-for-studying-synaptic-plasticity-with-neural-spike-train-data.pdf (4.6 MB)
Winston, P. Henry. The Genesis Story Understanding and Story Telling System A 21st Century Step toward Artificial Intelligence. (2014).PDF icon CBMM-Memo-019_StoryWhitePaper.pdf (894.38 KB)
Mottaghi, R., Fidler, S., Yuille, A., Urtasun, R. & Parikh, D. Human-Machine CRFs for Identifying Bottlenecks in Holistic Scene Understanding. (2014).PDF icon CBMM-Memo-020.pdf (1.89 MB)
Kosakowski, H. L., Powell, L. J. & Spelke, E. S. Imitation Preferences of Preverbal Infants. CBMM Summer Research Program (2014).PDF icon Imitation Preferences of Preverbal Infants. (11.32 MB)
Leibo, J. Z., Liao, Q., Anselmi, F. & Poggio, T. The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. (2014). doi:10.1101/004473PDF icon CBMM Memo 004_new.pdf (2.25 MB)
Evangelopoulos, G., Voinea, S., Zhang, C., Rosasco, L. & Poggio, T. Learning An Invariant Speech Representation. (2014).PDF icon CBMM-Memo-022-1406.3884v1.pdf (1.81 MB)
Liao, Q., Leibo, J. Z. & Poggio, T. Learning invariant representations and applications to face verification. NIPS 2013 (Advances in Neural Information Processing Systems 26, 2014). at <>PDF icon Liao_Leibo_Poggio_NIPS_2013.pdf (687.06 KB)
Zhang, C., Frogner, C., Araya-Polo, M. & Hohl, D. Machine Learning Based Automated Fault Detection in Seismic Traces. EAGE Conference and Exhibition 2014 (2014). at <>
Kreiman, G. Cognitive Neuroscience V, (2014).
Bansal, A. et al. Neural Dynamics Underlying Target Detection in the Human Brain. Journal of Neuroscience 34, (2014).
Baldauf, D. & Desimone, R. Neural Mechanisms of Object-Based Attention. Science 344, 424 - 427 (2014).
Tan, C. & Poggio, T. Neural tuning size is a key factor underlying holistic face processing. (2014).PDF icon CBMM-Memo-021-1406.3793.pdf (387.79 KB)
Kreiman, G., Rutishauser, U., Cerf, M. & Fried, I. Single neuron studies of the human brain. Probing cognition (2014).
Linderman, S. W., Johnson, M. J., Wilson, M. A. & Chen, Z. A Nonparametric Bayesian Approach to Uncovering Rat Hippocampal Population Codes During Spatial Navigation. (2014).PDF icon CBMM-Memo-027.pdf (9.44 MB)
Miconi, T., Groomes, L. & Kreiman, G. A normalization model of visual search predicts single trial human fixations in an object search task. (2014).PDF icon CBMM-Memo-008.pdf (854.51 KB)
Lu, W., Lian, X. & Yuille, A. Parsing Semantic Parts of Cars Using Graphical Models and Segment Appearance Consistency. (2014).PDF icon CBMM-Memo-018_opt.pdf (5.02 MB)
Kreiman, G. People, objects and interactions in movies. (2014).
Zhang, C., Voinea, S., Evangelopoulos, G., Rosasco, L. & Poggio, T. Phone Classification by a Hierarchy of Invariant Representation Layers. INTERSPEECH 2014 - 15th Annual Conf. of the International Speech Communication Association (International Speech Communication Association (ISCA), 2014). at <>
Xu, J., Jiang, M., Wang, S., Kankanhalli, M. & Zhao, Q. Predicting Saliency Beyond Pixels. (2014). at <>
Yan, P., Magid, R. & Schulz, L. Preschoolers expect others to learn rationally from evidence. Annual Conference of the Cognitive Science Society (2014).PDF icon Yan, Magid, & Schulz_CogSci14_REVISED.pdf (302.4 KB)