Publication
Double descent in the condition number. (2019).
Fixing typos, clarifying error in y, best approach is crossvalidation (837.18 KB)
Incorporated footnote in text plus other edits (854.05 KB)
Deleted previous discussion on kernel regression and deep nets: it will appear, extended, in a separate paper (795.28 KB)
correcting a bad typo (261.24 KB)
Deleted plot of condition number of kernel matrix: we cannot get a double descent curve (769.32 KB)
From Marr’s Vision to the Problem of Human Intelligence. (2021).
CBMM-Memo-118.pdf (362.19 KB)
Implicit dynamic regularization in deep networks. (2020).
v1.2 (2.29 MB)
v.59 Update on rank (2.43 MB)
Stable Foundations for Learning: a framework for learning theory (in both the classical and modern regime). (2020).
Original file (584.54 KB)
Corrected typos and details of "equivalence" CV stability and expected error for interpolating machines. Added Appendix on SGD. (905.29 KB)
Edited Appendix on SGD. (909.19 KB)
Deleted Appendix. Corrected typos etc (880.27 KB)
Added result about square loss and min norm (898.03 KB)
Complexity Control by Gradient Descent in Deep Networks. Nature Communications 11, (2020).
s41467-020-14663-9.pdf (431.68 KB)
Theory of Deep Learning III: explaining the non-overfitting puzzle. (2017).
CBMM-Memo-073.pdf (2.65 MB)
CBMM Memo 073 v2 (revised 1/15/2018) (2.81 MB)
CBMM Memo 073 v3 (revised 1/30/2018) (2.72 MB)
CBMM Memo 073 v4 (revised 12/30/2018) (575.72 KB)
Is Research in Intelligence an Existential Risk?. (2014).
Is Research in Intelligence an Existential Risk.pdf (571.42 KB)
Compositional Sparsity of Learnable Functions. (2024).
This is an update of the AMS paper (230.72 KB)
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing 1-17 (2017). doi:10.1007/s11633-017-1054-2
art%3A10.1007%2Fs11633-017-1054-2.pdf (1.68 MB)
From Associative Memories to Powerful Machines. (2021).
v1.0 (1.01 MB)
v1.3Section added August 6 on self attention (3.9 MB)
Cervelli menti algoritmi. 272 (Sperling & Kupfer, 2023). at <https://www.sperling.it/libri/cervelli-menti-algoritmi-marco-magrini>
I-theory on depth vs width: hierarchical function composition. (2015).
cbmm_memo_041.pdf (1.18 MB)
Turing++ Questions: A Test for the Science of (Human) Intelligence. AI Magazine 37 , 73-77 (2016).
Turing_Plus_Questions.pdf (424.91 KB)
Theory I: Why and When Can Deep Networks Avoid the Curse of Dimensionality?. (2016).
CBMM-Memo-058v1.pdf (2.42 MB)
CBMM-Memo-058v5.pdf (2.45 MB)
CBMM-Memo-058-v6.pdf (2.74 MB)
Proposition 4 has been deleted (2.75 MB)
Theory II: Landscape of the Empirical Risk in Deep Learning. (2017).
CBMM Memo 066_1703.09833v2.pdf (5.56 MB)
What if.. (2015).
What if.pdf (2.09 MB)
An Overview of Some Issues in the Theory of Deep Networks. IEEJ Transactions on Electrical and Electronic Engineering 15, 1560 - 1571 (2020).
The History of Neuroscience in Autobiography Volume 8 8, (Society for Neuroscience, 2014).
Volume Introduction and Preface (232.8 KB)
TomasoPoggio.pdf (1.43 MB)
Theory II: Deep learning and optimization. Bulletin of the Polish Academy of Sciences: Technical Sciences 66, (2018).
03_775-788_00920_Bpast.No_.66-6_31.12.18_K2.pdf (5.43 MB)
Theoretical issues in deep networks. Proceedings of the National Academy of Sciences 201907369 (2020). doi:10.1073/pnas.1907369117
PNASlast.pdf (915.3 KB)
Theoretical Issues in Deep Networks. (2019).
CBMM Memo 100 v1 (1.71 MB)
CBMM Memo 100 v3 (8/25/2019) (1.31 MB)
CBMM Memo 100 v4 (11/19/2019) (1008.23 KB)
Computational role of eccentricity dependent cortical magnification. (2014).
CBMM-Memo-017.pdf (1.04 MB)
Deep Learning: mathematics and neuroscience. (2016).
Deep Learning- mathematics and neuroscience.pdf (1.25 MB)
Visual Cortex and Deep Networks: Learning Invariant Representations. 136 (The MIT Press, 2016). at <https://mitpress.mit.edu/books/visual-cortex-and-deep-networks>
Loss landscape: SGD has a better view. (2020).
CBMM-Memo-107.pdf (1.03 MB)
Typos and small edits, ver11 (955.08 KB)
Small edits, corrected Hessian for spurious case (337.19 KB)
]