Publication
Implicit dynamic regularization in deep networks. (2020).
v1.2 (2.29 MB)
v.59 Update on rank (2.43 MB)
Stable Foundations for Learning: a framework for learning theory (in both the classical and modern regime). (2020).
Original file (584.54 KB)
Corrected typos and details of "equivalence" CV stability and expected error for interpolating machines. Added Appendix on SGD. (905.29 KB)
Edited Appendix on SGD. (909.19 KB)
Deleted Appendix. Corrected typos etc (880.27 KB)
Added result about square loss and min norm (898.03 KB)
Complexity Control by Gradient Descent in Deep Networks. Nature Communications 11, (2020).
s41467-020-14663-9.pdf (431.68 KB)
Theory I: Deep networks and the curse of dimensionality. Bulletin of the Polish Academy of Sciences: Technical Sciences 66, (2018).
02_761-774_00966_Bpast.No_.66-6_28.12.18_K1.pdf (1.18 MB)
Theory II: Landscape of the Empirical Risk in Deep Learning. (2017).
CBMM Memo 066_1703.09833v2.pdf (5.56 MB)
From Associative Memories to Powerful Machines. (2021).
v1.0 (1.01 MB)
v1.3Section added August 6 on self attention (3.9 MB)
Is Research in Intelligence an Existential Risk?. (2014).
Is Research in Intelligence an Existential Risk.pdf (571.42 KB)
Explicit regularization and implicit bias in deep network classifiers trained with the square loss. arXiv (2020). at <https://arxiv.org/abs/2101.00072>
Compositional Sparsity of Learnable Functions. (2024).
This is an update of the AMS paper (230.72 KB)
How Deep Sparse Networks Avoid the Curse of Dimensionality: Efficiently Computable Functions are Compositionally Sparse. (2022).
v1.0 (984.15 KB)
v5.7 adding in context learning etc (1.16 MB)
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing 1-17 (2017). doi:10.1007/s11633-017-1054-2
art%3A10.1007%2Fs11633-017-1054-2.pdf (1.68 MB)
From Marr’s Vision to the Problem of Human Intelligence. (2021).
CBMM-Memo-118.pdf (362.19 KB)
An Overview of Some Issues in the Theory of Deep Networks. IEEJ Transactions on Electrical and Electronic Engineering 15, 1560 - 1571 (2020).
Cervelli menti algoritmi. 272 (Sperling & Kupfer, 2023). at <https://www.sperling.it/libri/cervelli-menti-algoritmi-marco-magrini>
The History of Neuroscience in Autobiography Volume 8 8, (Society for Neuroscience, 2014).
Volume Introduction and Preface (232.8 KB)
TomasoPoggio.pdf (1.43 MB)
I-theory on depth vs width: hierarchical function composition. (2015).
cbmm_memo_041.pdf (1.18 MB)
Turing++ Questions: A Test for the Science of (Human) Intelligence. AI Magazine 37 , 73-77 (2016).
Turing_Plus_Questions.pdf (424.91 KB)
Theoretical issues in deep networks. Proceedings of the National Academy of Sciences 201907369 (2020). doi:10.1073/pnas.1907369117
PNASlast.pdf (915.3 KB)
Theory I: Why and When Can Deep Networks Avoid the Curse of Dimensionality?. (2016).
CBMM-Memo-058v1.pdf (2.42 MB)
CBMM-Memo-058v5.pdf (2.45 MB)
CBMM-Memo-058-v6.pdf (2.74 MB)
Proposition 4 has been deleted (2.75 MB)
Theoretical Issues in Deep Networks. (2019).
CBMM Memo 100 v1 (1.71 MB)
CBMM Memo 100 v3 (8/25/2019) (1.31 MB)
CBMM Memo 100 v4 (11/19/2019) (1008.23 KB)
What if.. (2015).
What if.pdf (2.09 MB)
Loss landscape: SGD has a better view. (2020).
CBMM-Memo-107.pdf (1.03 MB)
Typos and small edits, ver11 (955.08 KB)
Small edits, corrected Hessian for spurious case (337.19 KB)
Computational role of eccentricity dependent cortical magnification. (2014).
CBMM-Memo-017.pdf (1.04 MB)
Deep Learning: mathematics and neuroscience. (2016).
Deep Learning- mathematics and neuroscience.pdf (1.25 MB)
Visual Cortex and Deep Networks: Learning Invariant Representations. 136 (The MIT Press, 2016). at <https://mitpress.mit.edu/books/visual-cortex-and-deep-networks>
]