Publication

Found 910 results
Author Title [ Type(Desc)] Year
Journal Article
Adler, A. & Wax, M. Constant modulus algorithms via low-rank approximation. Signal Processing 160, 263 - 270 (2019).
Fisher, C. & Freiwald, W. A. Contrasting Specializations for Facial Motion within the Macaque Face-Processing System. Current Biology 25, (2015).PDF icon Facial Motion Selectivity in the Macaque Brain (1.43 MB)
Dillon, M. R., Huang, Y. & Spelke, E. S. Core foundations of abstract geometry. Proceedings of National Academy of Sciences of the United States of America 110, (2013).
Dillon, M. R. & Spelke, E. S. Core geometry in perspective. Developmental Science (2014). doi:10.1111/desc.12266
Livingstone, M. S., Arcaro, M. J. & Schade, P. F. Cortex Is Cortex: Ubiquitous Principles Drive Face-Domain Development. Trends in Cognitive Sciences (2018). doi:10.1016/j.tics.2018.10.009PDF icon 1-s2.0-S1364661318302572-main.pdf (260.4 KB)
Nassi, J. J., Gomez-Laberge, C., Kreiman, G. & Born, R. T. Corticocortical feedback increases the spatial extent of normalization. Frontiers in Systems Neuroscience 8, 105 (2014).
Kool, W., Gershman, S. J. & Cushman, F. A. Cost-Benefit Arbitration Between Multiple Reinforcement-Learning Systems. Psychol Sci 28, 1321-1333 (2017).
Spokes, A. C. & Spelke, E. S. The cradle of social knowledge: Infants' reasoning about caregiving and affiliation. Cognition 159, 102-116 (2017).
Lin, H. & Tegmark, M. Critical Behavior from Deep Dynamics: A Hidden Dimension in Natural Language. arXiv.org (2016).PDF icon Critical Behavior from Deep Dynamics: A Hidden Dimension in Natural Language (1.64 MB)
Xiao, Y. et al. Cross-task specificity and within-task invariance of cognitive control processes. Cell Reports 42, 111919 (2023).PDF icon PIIS2211124722018174.pdf (3.97 MB)
Liu, S. et al. Dangerous Ground: One-Year-Old Infants are Sensitive to Peril in Other Agents’ Action PlansAbstract. Open Mind 6, 211 - 231 (2022).
Chen, Z. & Wilson, M. A. Deciphering neural codes of memory during sleep. Trends in Neurosciences (2017).PDF icon proof (2.98 MB)
Zhang, Y. et al. Decoding of human identity by computer vision and neuronal vision. Scientific Reports 13, (2023).PDF icon s41598-022-26946-w.pdf (1.88 MB)
Zhang, Y. et al. Decoding of human identity by computer vision and neuronal visionAbstract. Scientific Reports 13, (2023).
Pramod, R. T., Mieczkowski, E., Fang, C. X., Tenenbaum, J. B. & Kanwisher, N. Decoding predicted future states from the brain’s “physics engine”. Science Advances 11, (2025).
Kliemann, D., Jacoby, N., Anzellottti, S. & Saxe, R. Decoding task and stimulus representations in face-responsive cortex. Cognitive Neuropsychology (2016).
Madhavan, R. et al. Decrease in gamma-band activity tracks sequence learning. Frontiers in Systems Neuroscience 8, (2015).PDF icon fnsys-08-00222.pdf (5.62 MB)
Sliwa, J. & Freiwald, W. A. A Dedicated Network for Social Interaction Processing in the Primate Brain. Science Vol. 356, pp. 745-749 (2017).
Poggio, T. Deep Leaning: Mathematics and Neuroscience. A Sponsored Supplement to Science Brain-Inspired intelligent robotics: The intersection of robotics and neuroscience, 9-12 (2016).
Adler, A., Araya-Polo, M. & Poggio, T. Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows. IEEE Signal Processing Magazine 38, 89 - 119 (2021).
Kell, A. J. E. & McDermott, J. H. Deep neural network models of sensory systems: windows onto the role of task constraints. Current Opinion in Neurobiology 55, 121 - 132 (2019).
Francl, A. & McDermott, J. H. Deep neural network models of sound localization reveal how perception is adapted to real-world environments. Nature Human Behavior 6, 111–133 (2022).PDF icon s41562-021-01244-z.pdf (7.22 MB)
Saddler, M. R., Gonzalez, R. & McDermott, J. H. Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception. Nature Communications 12, (2021).PDF icon s41467-021-27366-6.pdf (5.25 MB)
Barbu, A., Banda, D. & Katz, B. Deep video-to-video transformations for accessibility with an application to photosensitivity. Pattern Recognition Letters (2019). doi:10.1016/j.patrec.2019.01.019
Mhaskar, H. & Poggio, T. Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications 14, 829 - 848 (2016).

Pages