Publication

Found 910 results
Author Title [ Type(Desc)] Year
Journal Article
Araya-Polo, M., Jennings, J., Adler, A. & Dahlke, T. Deep-learning tomography. The Leading Edge 37, 58 - 66 (2018).PDF icon TLE2018.pdf (1.9 MB)
Dehghani, N. Design of the Artificial: lessons from the biological roots of general intelligence. (2017). at <https://arxiv.org/pdf/1703.02245>PDF icon DesignArtificial_Dehghani_arXiv.pdf (222.47 KB)
Meyers, E., Liang, A., Katsuki, F. & Constantinidis, C. Differential Processing of Isolated Object and Multi-item Pop-Out Displays in LIP and PFC. Cerebral Cortex (2017). doi:10.1093/cercor/bhx243
Gershman, S. J., Tenenbaum, J. B. & Jaekel, F. Discovering hierarchical motion structure. Vision Research Available online 26 March 2015, (2015).PDF icon hierarchical_motion.pdf (582.01 KB)
Harari, D., Tenenbaum, J. B. & Ullman, S. Discovery and usage of joint attention in images. arXiv.org (2018). at <https://arxiv.org/abs/1804.04604>PDF icon 1804.04604v1.pdf (488.85 KB)
Mendoza-Halliday, D., Xu, H., Azevedo, F. A. C. & Desimone, R. Dissociable neuronal substrates of visual feature attention and working memory. Neuron 112, 850 - 863.e6 (2024).
Mahowald, K. et al. Dissociating language and thought in large language models. Trends in Cognitive Sciences 28, 517 - 540 (2024).
Norman-Haignere, S. V., Kanwisher, N., McDermott, J. H. & Conway, B. R. Divergence in the functional organization of human and macaque auditory cortex revealed by fMRI responses to harmonic tones. Nature Neuroscience (2019). doi:10.1038/s41593-019-0410-7
Armendariz, M., Xiao, W., Vinken, K. & Kreiman, G. Do computational models of vision need shape-based representations? Evidence from an individual with intriguing visual perceptions. Cognitive Neuropsychology 1 - 3 (2022). doi:10.1080/02643294.2022.2041588
Dehghani, N. Dynamic balance of excitation and inhibition in human and monkey neocortex. Nature Scientific Reports (2016). doi:10.1038/srep23176PDF icon BalanceExcitationInhibition.pdf (2.1 MB)
Meyers, E. Dynamic population coding and its relationship to working memory. Journal of Neurophysiology 120, 2260 - 2268 (2018).
Xu, M., Rangamani, A., Liao, Q., Galanti, T. & Poggio, T. Dynamics in Deep Classifiers trained with the Square Loss: normalization, low rank, neural collapse and generalization bounds. Research (2023). doi:10.34133/research.0024PDF icon research.0024.pdf (4.05 MB)
N. Murty, A. Ratan & Arun, S. P. Dynamics of 3D view invariance in monkey inferotemporal cortex. Journal of Neurophysiology 11319212373232821, 2180 - 2194 (2015).
Isik, L., Meyers, E., Leibo, J. Z. & Poggio, T. The dynamics of invariant object recognition in the human visual system. J Neurophysiol 111, 91-102 (2014).
Stern, M., Sompolinsky, H. & Abbott, L. F. Dynamics of random neural networks with bistable units. Phys Rev E Stat Nonlin Soft Matter Phys 90, (2014).
Thomas, A. J., Woo, B., Nettle, D., Spelke, E. S. & Saxe, R. Early concepts of intimacy: Young humans use saliva sharing to infer close relationships. Science 375, 311 - 315 (2022).
Młynarski, W. & McDermott, J. H. Ecological origins of perceptual grouping principles in the auditory system. Proceedings of the National Academy of Sciences 116, 25355 - 25364 (2019).
Azami, H. et al. EEG Entropy in REM Sleep as a Physiologic Biomarker in Early Clinical Stages of Alzheimer’s Disease. Journal of Alzheimer's Disease 91, 1557 - 1572 (2023).
N. Murty, A. Ratan & Arun, S. P. Effect of silhouetting and inversion on view invariance in the monkey inferotemporal cortex. Journal of Neurophysiology 11823, 353 - 362 (2017).
Sikarwar, A. & Kreiman, G. On the Efficacy of Co-Attention Transformer Layers in Visual Question Answering. arXiv (2022). doi:10.48550/arXiv.2201.03965PDF icon On_the_Efficacy_of_Co-Attention_Transformer_Layers.pdf (35.54 MB)
Yildirim, I., Belledonne, M., Freiwald, W. A. & Tenenbaum, J. B. Efficient inverse graphics in biological face processing. Science Advances 6, eaax5979 (2020).PDF icon eaax5979.full_.pdf (3.22 MB)
Woo, B. & Spelke, E. Eight-Month-Old Infants’ Social Evaluations of Agents Who Act on False Beliefs. Proceedings of the Annual Meeting of the Cognitive Science Society 44, (2022).
Houlihan, S. Dae, Kleiman-Weiner, M., Hewitt, L. B., Tenenbaum, J. B. & Saxe, R. Emotion prediction as computation over a generative theory of mind. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381, (2023).PDF icon houlihan2023computedappraisals.pdf (2.37 MB)
Lee, M. J. & DiCarlo, J. J. An empirical assay of view-invariant object learning in humans and comparison with baseline image-computable models. bioRxiv (2023). at <https://www.biorxiv.org/content/10.1101/2022.12.31.522402v1>
Becker, L. A. et al. Eszopiclone and Zolpidem Produce Opposite Effects on Hippocampal Ripple DensityDataSheet1.docx. Frontiers in Pharmacology 12, (2022).

Pages