Publication

Found 910 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
O
Lewis, O. & Poggio, T. From Neuron to Cognition via Computational Neuroscience (The MIT Press, 2016). at <https://mitpress.mit.edu/neuron-cognition>
Rosasco, L. Object recognition data sets (iCub/IIT). (2013).
Barbu, A. et al. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9142-objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.pdf (16.31 MB)
Liao, Q. & Poggio, T. Object-Oriented Deep Learning. (2017).PDF icon CBMM-Memo-070.pdf (963.54 KB)
Kamps, F. S., Julian, J. B., Kubilius, J., Kanwisher, N. & Dilks, D. D. The occipital place area represents the local elements of scenes. NeuroImage 132, 417 - 424 (2016).
Wong, A. & Yuille, A. One Shot Learning by Composition of Meaningful Patches. International Conference on Computer Vision (ICCV) (2015).PDF icon AlexWongOneShotCVPR2015.pdf (1.83 MB)
Wong, A. & Yuille, A. One Shot Learning via Compositions of Meaningful Patches. International Conference on Computer Vision (ICCV) (2015).PDF icon AlexWongOneShotCVPR2015.pdf (1.83 MB)
Casper, S., Nadeau, M. & Kreiman, G. One thing to fool them all: generating interpretable, universal, and physically-realizable adversarial features. arXiv (2022). doi:10.48550/arXiv.2110.03605PDF icon 2110.03605.pdf (6.7 MB)
Wu, Y., Muentener, P. & Schulz, L. One- to Four-year-olds’ Ability to Connect Diverse Positive Emotional Expressions to Their Probable Causes . Society for Research in Child Development (2017).
Sheskin, M. et al. Online Developmental Science to Foster Innovation, Access, and Impact. Trends in Cognitive Sciences 24, 675 - 678 (2020).
Online learning of symbolic concepts. (2017).
Brewer, K., Mittman, B., Kominsky, J. & Henes, J. Open Source Subject Database Project (OSSDP). (2019).
Rando, M., Molinari, C., Villa, S. & Rosasco, L. An Optimal Structured Zeroth-order Algorithm for Non-smooth Optimization. 37th Conference on Neural Information Processing Systems (NeurIPS 2023) (2023). at <https://proceedings.neurips.cc/paper_files/paper/2023/file/7429f4c1b267cf619f28c4d4f1532f99-Paper-Conference.pdf>
Newman, J. P. et al. Optogenetic feedback control of neural activity. Elife 4, e07192 (2015).PDF icon elife-07192-v1-download.pdf (5.92 MB)
Deen, B. et al. Organization of high-level visual cortex in human infants. Nature Communications (2017). doi:10.1038/ncomms13995
Gershman, S. J. Origin of perseveration in the trade-off between reward and complexity. Cognition 204, 104394 (2020).
Liu, S., Brooks, N. B. & Spelke, E. S. Origins of the concepts cause, cost, and goal in prereaching infants. Cognitive Development Society (2019).PDF icon liu_etal_lumi_cds2019_final.pdf (22.95 MB)
Liu, S., Brooks, N. B. & Spelke, E. S. Origins of the concepts cause, cost, and goal in prereaching infants. PNAS (2019). doi:https://doi.org/10.1073/pnas.1904410116PDF icon Author's last draft (2.58 MB)
Penagos, H., Varela, C. & Wilson, M. A. Oscillations, neural computations and learning during wake and sleep. Current Opinion in Neurobiology 44C, (2017).
Rockmore, D. Our Mother the Machine, by Dan Rockmore [Huffpost] . (2015). at <http://www.huffingtonpost.com/dan-rockmore/our-mother-the-machine_b_7273504.html>PDF icon Our Mother the Machine.pdf (199.73 KB)
Xiao, W., Sharma, S., Kreiman, G. & Livingstone, M. S. Out of sight, out of mind: Responses in primate ventral visual cortex track individual fixations during natural vision. bioRxiv (2023). doi:10.1101/2023.02.08.527666
Poggio, T. & Banburski, A. An Overview of Some Issues in the Theory of Deep Networks. IEEJ Transactions on Electrical and Electronic Engineering 15, 1560 - 1571 (2020).

Pages