Export 130 results:
Filters: Author is Tomaso Poggio  [Clear All Filters]
Bach, F. & Poggio, T. Introduction Special issue: Deep learning. Information and Inference 5, 103-104 (2016).
Anselmi, F., Rosasco, L. & Poggio, T. On invariance and selectivity in representation learning. Information and Inference: A Journal of the IMA iaw009 (2016). doi:10.1093/imaiai/iaw009PDF icon imaiai.iaw009.full_.pdf (267.87 KB)
Mhaskar, H., Liao, Q. & Poggio, T. Learning Functions: When Is Deep Better Than Shallow. (2016). at <>
Morère, O., Veillard, A., Chandrasekhar, V. & Poggio, T. Nested Invariance Pooling and RBM Hashing for Image Instance Retrieval. (2016). at <>PDF icon 1603.04595.pdf (2.9 MB)
Tan, C. & Poggio, T. Neural Tuning Size in a Model of Primate Visual Processing Accounts for Three Key Markers of Holistic Face Processing. Public Library of Science | PLoS ONE 1(3): e0150980, (2016).PDF icon journal.pone_.0150980.PDF (384.15 KB)
Lewis, O. & Poggio, T. From Neuron to Cognition via Computational Neuroscience (The MIT Press, 2016). at <>
Tacchetti, A., Isik, L. & Poggio, T. Spatio-temporal convolutional networks explain neural representations of human actions. (2016).
Liao, Q., Kawaguchi, K. & Poggio, T. Streaming Normalization: Towards Simpler and More Biologically-plausible Normalizations for Online and Recurrent Learning. (2016).PDF icon CBMM-Memo-057.pdf (1.27 MB)
Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B. & Liao, Q. Theory I: Why and When Can Deep Networks Avoid the Curse of Dimensionality?. (2016).PDF icon CBMM-Memo-058v1.pdf (2.42 MB)PDF icon CBMM-Memo-058v5.pdf (2.45 MB)PDF icon CBMM-Memo-058-v6.pdf (2.74 MB)PDF icon Proposition 4 has been deleted (2.75 MB)
Poggio, T. & Meyers, E. Turing++ Questions: A Test for the Science of (Human) Intelligence. AI Magazine 37 , 73-77 (2016).PDF icon Turing_Plus_Questions.pdf (424.91 KB)
Leibo, J. Z., Liao, Q., Freiwald, W. A., Anselmi, F. & Poggio, T. View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation. (2016).PDF icon faceMirrorSymmetry_memo_ver01.pdf (3.93 MB)
Poggio, T. & Anselmi, F. Visual Cortex and Deep Networks: Learning Invariant Representations. 136 (The MIT Press, 2016). at <>
Anselmi, F., Rosasco, L., Tan, C. & Poggio, T. Deep Convolutional Networks are Hierarchical Kernel Machines. (2015).PDF icon CBMM Memo 035_rev5.pdf (975.65 KB)
Zhang, C., Voinea, S., Evangelopoulos, G., Rosasco, L. & Poggio, T. Discriminative Template Learning in Group-Convolutional Networks for Invariant Speech Representations. INTERSPEECH-2015 (International Speech Communication Association (ISCA), 2015). at <>
Nickel, M., Rosasco, L. & Poggio, T. Holographic Embeddings of Knowledge Graphs. (2015).PDF icon holographic-embeddings.pdf (677.87 KB)
Liao, Q., Leibo, J. Z. & Poggio, T. How Important is Weight Symmetry in Backpropagation?. (2015).PDF icon 1510.05067v3.pdf (615.32 KB)
Anselmi, F., Rosasco, L. & Poggio, T. On Invariance and Selectivity in Representation Learning. (2015).PDF icon CBMM Memo No. 029 (812.07 KB)
Leibo, J. Z., Liao, Q., Anselmi, F. & Poggio, T. The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. PLOS Computational Biology 11, e1004390 (2015).PDF icon journal.pcbi_.1004390.pdf (2.04 MB)
Leibo, J. Z., Liao, Q., Anselmi, F. & Poggio, T. The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. (2015).Binary Data modularity_dataset_ver1.tar.gz (36.14 MB)
Isik, L., Tacchetti, A. & Poggio, T. Invariant representations for action recognition in the visual system. Computational and Systems Neuroscience (2015).
Tacchetti, A., Isik, L. & Poggio, T. Invariant representations for action recognition in the visual system. Vision Sciences Society 15, (2015).
Poggio, T., Anselmi, F. & Rosasco, L. I-theory on depth vs width: hierarchical function composition. (2015).PDF icon cbmm_memo_041.pdf (1.18 MB)
Frogner, C., Zhang, C., Mobahi, H., Araya-Polo, M. & Poggio, T. Learning with a Wasserstein Loss. Advances in Neural Information Processing Systems (NIPS 2015) 28 (2015). at <>PDF icon Learning with a Wasserstein Loss_1506.05439v2.pdf (2.57 MB)
Mroueh, Y., Voinea, S. & Poggio, T. Learning with Group Invariant Features: A Kernel Perspective. NIPS 2015 (2015). at <>PDF icon LearningInvarianceKernel_NIPS2015.pdf (292.18 KB)
Poggio, T., Rosasco, L., Shashua, A., Cohen, N. & Anselmi, F. Notes on Hierarchical Splines, DCLNs and i-theory. (2015).PDF icon CBMM Memo 037 (1.83 MB)