Export 859 results:
Casper, S., Nadeau, M. & Kreiman, G. One thing to fool them all: generating interpretable, universal, and physically-realizable adversarial features. arXiv (2022). doi:10.48550/arXiv.2110.03605PDF icon 2110.03605.pdf (6.7 MB)
Gupte, A., Banburski, A. & Poggio, T. PCA as a defense against some adversaries. (2022).PDF icon CBMM-Memo-135.pdf (2.58 MB)
Bagus, A. Marliawaty, Marques, T., Sanghavi, S., DiCarlo, J. J. & Schrimpf, M. Primate Inferotemporal Cortex Neurons Generalize Better to Novel Image Distributions Than Analogous Deep Neural Networks Units. NeurIPS (2022). at <>
Quality Early Learning: Nurturing Children's Potential. (The World Bank, 2022). doi:10.1596/978-1-4648-1795-3
Cheng, E. et al. Quantifying the Emergence of Symbolic Communication. CogSci (2022). at <>
Houlihan, S. Dae, Ong, D., Cusimano, M. & Saxe, R. Reasoning about the antecedents of emotions: Bayesian causal inference over an intuitive theory of mind. Proceedings of the Annual Conference of the Cognitive Science Society 44, 854-861 (2022).PDF icon Houlihan 2022 Proceedings of the 44th Annual Conference of the Cognitive Science Society.pdf (687.98 KB)
Anselmi, F. & Poggio, T. Representation Learning in Sensory Cortex: a theory. IEEE Access 1 - 1 (2022). doi:10.1109/ACCESS.2022.3208603PDF icon Representation_Learning_in_Sensory_Cortex_a_theory.pdf (1.17 MB)
Casper, S., Nadeau, M., Hadfield-Menell, D. & Kreiman, G. Robust Feature-Level Adversaries are Interpretability Tools. NeurIPS (2022). at <>PDF icon 8789_robust_feature_level_adversari.pdf (3.79 MB)
Montagna, F., Noceti, N., Rosasco, L., Zhang, K. & Locatello, F. Scalable Causal Discovery with Score Matching. NeurIPS 2022 (2022). at <>
Galanti, T. & Poggio, T. SGD Noise and Implicit Low-Rank Bias in Deep Neural Networks. (2022).PDF icon Implicit Rank Minimization.pdf (1.76 MB)
Cheng, E., Kuo, Y. - L., Cases, I., Katz, B. & Barbu, A. Spontaneous sign emergence in humans and machines through an embodied communication game. JCoLE Workshop (2022).
Shaham, N., Chandra, J., Kreiman, G. & Sompolinsky, H. Stochastic consolidation of lifelong memoryAbstract. Scientific Reports 12, (2022).PDF icon s41598-022-16407-9.pdf (2.54 MB)
Ellis, K., Albright, A., Solar-Lezama, A., Tenenbaum, J. B. & O’Donnell, T. J. Synthesizing theories of human language with Bayesian program inductionAbstract. Nature Communications 13, (2022).PDF icon s41467-022-32012-w.pdf (2.19 MB)
Han, Y., Poggio, T. & Cheung, B. System identification of neural systems: If we got it right, would we know?. (2022).PDF icon CBMM-Memo-136.pdf (1.75 MB)
Xiao, Y. et al. Task-specific neural processes underlying conflict resolution during cognitive control. BioRxiv (2022). doi:10.1101/2022.01.16.476535 PDF icon 2022.01.16.476535v1.full_.pdf (22.96 MB)
Sakai, A. et al. Three approaches to facilitate DNN generalization to objects in out-of-distribution orientations and illuminations. (2022).PDF icon CBMM-Memo-119.pdf (31.08 MB)
Woo, B. M. & Spelke, E. S. Toddlers’ social evaluations of agents who act on false beliefs. Developmental Science 26, (2022).
Tazi, Y., Berger, M. & Freiwald, W. A. Towards an objective characterization of an individual's facial movements using Self-Supervised Person-Specific-Models. arXiv (2022). at <>
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. (2022).PDF icon CBMM-Memo-132.pdf (1.15 MB)
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. 2022 IEEE International Conference on Robotics and Automation (ICRA) (2022). doi:10.1109/ICRA46639.2022.9811928
Yamada, M., D'Amario, V., Takemoto, K., Boix, X. & Sasaki, T. Transformer Module Networks for Systematic Generalization in Visual Question Answering. (2022).PDF icon CBMM-Memo-121.pdf (1.06 MB)PDF icon version 2 (3/22/2023) (1.33 MB)
Rangamani, A. & Xie, Y. Understanding the Role of Recurrent Connections in Assembly Calculus. (2022).PDF icon CBMM-Memo-137.pdf (1.49 MB)
Kamps, F. S., Richardson, H., N. Murty, A. Ratan, Kanwisher, N. & Saxe, R. Using child‐friendly movie stimuli to study the development of face, place, and object regions from age 3 to 12 years. Human Brain Mapping (2022). doi:10.1002/hbm.25815
Gartstein, M. A. et al. Using machine learning to understand age and gender classification based on infant temperament. PLOS ONE 17, e0266026 (2022).
Izard, V., Pica, P. & Spelke, E. S. Visual foundations of Euclidean geometry. Cognitive Psychology 136, 101494 (2022).