Publication

Export 554 results:
2018
Ross, C., Barbu, A., Berzak, Y., Myanganbayar, B. & Katz, B. Grounding language acquisition by training semantic parsersusing captioned videos. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018), (2018). at <http://aclweb.org/anthology/D18-1285>PDF icon Ross-et-al_ACL2018_Grounding language acquisition by training semantic parsing using caption videos.pdf (3.5 MB)
Traer, J. & McDermott, J. H. Human inference of force from impact sounds: Perceptual evidence for inverse physics. Annual Meeting of the Acoustical Society 143, (2018).
Traer, J. & McDermott, J. H. Human recognition of environmental sounds is not always robust to reverberation. Annual Meeting of the Acoustical Society 143, (2018).
Ben-Yosef, G. & Ullman, S. Image interpretation above and below the object level. Interface Focus 8, 20180020 (2018).
Ben-Yosef, G. & Ullman, S. Image interpretation above and below the object level. (2018).PDF icon CBMM-Memo-089.pdf (2.06 MB)
Saxe, R. Imaging the infant brain. Japanese Society for Neuroscience Kobe Japan, (2018).
Tacchetti, A., Isik, L. & Poggio, T. Invariant Recognition Shapes Neural Representations of Visual Input. Annual Review of Vision Science 4, 403 - 422 (2018).PDF icon annurev-vision-091517-034103.pdf (1.55 MB)
O'Brien, N., Latessa, S., Evangelopoulos, G. & Boix, X. The Language of Fake News: Opening the Black-Box of Deep Learning Based Detectors. workshop on "AI for Social Good", NIPS 2018 (2018). at <http://hdl.handle.net/1721.1/120056>PDF icon fake-news-paper-NIPS.pdf (147.36 KB)PDF icon fake-news-paper-NIPS_2018_v2.pdf (147.36 KB)
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Auditory Codes from Natural Sound Statistics. Neural Computation 30, 631-669 (2018).
Ullman, T. D., Stuhlmüller, A., Goodman, N. D. & Tenenbaum, J. B. Learning physical parameters from dynamic scenes. Cognitive Psychology 104, 57-82 (2018).PDF icon T-Ullman-etal_CogPsych_LearningPhysicalParametersFromDynamicScenes.pdf (3.15 MB)
Wu, K., Wu, E. & Kreiman, G. Learning Scene Gist with Convolutional Neural Networks to Improve Object Recognition. arXiv | Cornell University arXiv:1803.01967, (2018).
Isik, L. & Tacchetti, A. MEG action recognition data. (2018). doi:https://doi.org/10.7910/DVN/KFYY2M
Kool, W. & Botvinick, M. Mental labour. Nature Human Behaviour 2, 899 - 908 (2018).
Misra, P., Marconi, A., Peterson, M. F. & Kreiman, G. Minimal memory for details in real life events. Scientific Reports 8, (2018).
McCoy, J. P. & Ullman, T. D. A Minimal Turing Test. Journal of Experimental Social Psychology 79, 1 - 8 (2018).
Katz, B., Borchardt, G., Felshin, S. & Mora, F. The Wiley Handbook of Human Computer Interaction 2, 539-559 (John Wiley & Sons , 2018).
Madhavan, R. et al. Neural Interactions Underlying Visuomotor Associations in the Human Brain. Cerebral Cortex 1–17, (2018).
Lotter, W., Kreiman, G. & Cox, D. A neural network trained to predict future videoframes mimics critical properties of biologicalneuronal responses and perception. ( arXiv | Cornell University, 2018). at <https://arxiv.org/pdf/1805.10734.pdf>PDF icon 1805.10734.pdf (9.59 MB)
Myanganbayar, B. et al. Partially Occluded Hands: A challenging new dataset for single-image hand pose estimation. The 14th Asian Conference on Computer Vision (ACCV 2018) (2018). at <http://accv2018.net/>PDF icon partially-occluded-hands-6.pdf (8.29 MB)
Myanganbayar, B. et al. Partially Occluded Hands: A challenging new dataset for single-image hand pose estimation. (2018).PDF icon CBMM-Memo-097.pdf (8.53 MB)
Kool, W., Gershman, S. J. & Cushman, F. A. Planning Complexity Registers as a Cost in Metacontrol. Journal of Cognitive Neuroscience 30, 1391 - 1404 (2018).
Wu, Y., Baker, C., Tenenbaum, J. B. & Schulz, L. Rational inference of beliefs and desires from emotional expressions. Cognitive Science 42, (2018).PDF icon Wu_Baker_Tenenbaum_Schulz_in_press_cognitive_science.pdf (1.65 MB)
Hu, S. et al. Real-Time Readout of Large-Scale Unsorted Neural Ensemble Place Codes. Cell Reports 25, 2635 - 2642.e5 (2018).
Tang, H. et al. Recurrent computations for visual pattern completion. Proceedings of the National Academy of Sciences (2018). doi:10.1073/pnas.1719397115PDF icon 1719397115.full_.pdf (1.1 MB)
Liu, C. et al. Recurrent Multimodal Interaction for Referring Image Segmentation. (2018).PDF icon CBMM-Memo-079.pdf (10.16 MB)

Pages