Publication

Export 653 results:
2019
Srivastava, S., Ben-Yosef, G. & Boix, X. Minimal images in deep neural networks: Fragile Object Recognition in Natural Images. International Conference on Learning Representations (ICLR) (2019). at <https://arxiv.org/pdf/1902.03227.pdf>
Ullman, S., Dorfman, N. & Harari, D. A model for discovering ‘containment’ relations. Cognition 183, 67 - 81 (2019).
Smith, K. A. et al. Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (2019). at <http: //physadept.csail.mit.edu/>PDF icon ADEPT_NeurIPS.pdf (11.07 MB)
Vazquez, Y., Ianni, G. & Freiwald, W. A. Neural mechanisms supporting facial expressions . unknown (2019).
Bashivan, P., Kar, K. & DiCarlo, J. J. Neural Population Control via Deep Image Synthesis. Science 364, (2019).PDF icon Author's last draft (18.45 MB)
Barbu, A. et al. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9142-objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.pdf (16.31 MB)
Brewer, K., Mittman, B., Kominsky, J. & Henes, J. Open Source Subject Database Project (OSSDP). (2019).
Liu, S., Brooks, N. B. & Spelke, E. S. Origins of the concepts cause, cost, and goal in prereaching infants. PNAS (2019). doi:https://doi.org/10.1073/pnas.1904410116PDF icon Author's last draft (2.58 MB)
Liu, S., Brooks, N. B. & Spelke, E. S. Origins of the concepts cause, cost, and goal in prereaching infants. Cognitive Development Society (2019).PDF icon liu_etal_lumi_cds2019_final.pdf (22.95 MB)
Deen, B. & Saxe, R. Parts‐based representations of perceived face movements in the superior temporal sulcus. Human Brain Mapping 40, 2499 - 2510 (2019).
Liu, S., McCoy, J. P. & Ullman, T. D. People's perceptions of others’ risk preferences. Cognitive Science Society (2019).PDF icon risk_cogsci_2019_final.pdf (899.8 KB)
Traer, J., Cusimano, M. & McDermott, J. H. A perceptually inspired generative model of rigid-body contact sounds. Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19) (2019).
Han, Y., Roig, G., Geiger, G. & Poggio, T. Properties of invariant object recognition in human one-shot learning suggests a hierarchical architecture different from deep convolutional neural networks. Vision Science Society (2019).
Han, Y., Roig, G., Geiger, G. & Poggio, T. A. Properties of invariant object recognition in human oneshot learning suggests a hierarchical architecture different from deep convolutional neural networks . Vision Science Society (2019). doi:10.1167/19.10.28d
Coronel, S. Otero, Phillips-Jones, T., Sani, I. & Freiwald, W. A. Pupillary responses track changes in arousal and attention while exploring a virtual reality environment. The Rockefeller University 2019 Summer Undergraduate Research Fellowship (SURF) Program (2019).
Chu, J., Gauthier, J., Levy, R., Tenenabum, J. B. & Schulz, L. E. Query-guided visual search . 41st Annual conference of the Cognitive Science Society (2019).
Cohen, M. A. et al. Representational similarity precedes category selectivity in the developing ventral visual pathway. NeuroImage 197, 565 - 574 (2019).
Cusimano, M., Traer, J. & McDermott, J. H. Scrape, rub, and roll: causal inference in the perception of sustained contact sounds . Cognitive Science (2019).
Fazeli, N. et al. See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion. Science Robotics 4, eaav3123 (2019).
Poggio, T., Banburski, A. & Liao, Q. Theoretical Issues in Deep Networks. (2019).PDF icon CBMM Memo 100 v1 (1.71 MB)PDF icon CBMM Memo 100 v3 (8/25/2019) (1.31 MB)PDF icon CBMM Memo 100 v4 (11/19/2019) (1008.23 KB)
Liao, Q., Banburski, A. & Poggio, T. Theories of Deep Learning: Approximation, Optimization and Generalization . TECHCON 2019 (2019).
Jozwik, K. M., Schrimpf, M., Kanwisher, N. & DiCarlo, J. J. To find better neural network models of human vision, find better neural network models of primate vision. BioRxiv (2019). at <https://www.biorxiv.org/content/10.1101/688390v1.full>
Patzelt, E. H., Kool, W., Millner, A. J. & Gershman, S. J. The transdiagnostic structure of mental effort avoidance. Scientific Reports 9, (2019).
Jacoby, N. et al. Universal and Non-universal Features of Musical Pitch Perception Revealed by Singing. Current Biology (2019). doi:10.1016/j.cub.2019.08.020
Stephenson, C. et al. Untangling in Invariant Speech Recognition. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9583-untangling-in-invariant-speech-recognition.pdf (2.09 MB)

Pages