Publication
Export 149 results:
Filters: Author is Tomaso A. Poggio [Clear All Filters]
Streaming Normalization: Towards Simpler and More Biologically-plausible Normalizations for Online and Recurrent Learning. (2016). CBMM-Memo-057.pdf (1.27 MB)
Theory I: Why and When Can Deep Networks Avoid the Curse of Dimensionality?. (2016). CBMM-Memo-058v1.pdf (2.42 MB) CBMM-Memo-058v5.pdf (2.45 MB) CBMM-Memo-058-v6.pdf (2.74 MB) Proposition 4 has been deleted (2.75 MB)
Turing++ Questions: A Test for the Science of (Human) Intelligence. AI Magazine 37 , 73-77 (2016). Turing_Plus_Questions.pdf (424.91 KB)
View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation. (2016). faceMirrorSymmetry_memo_ver01.pdf (3.93 MB)
Visual Cortex and Deep Networks: Learning Invariant Representations. 136 (The MIT Press, 2016). at <https://mitpress.mit.edu/books/visual-cortex-and-deep-networks>
Deep Convolutional Networks are Hierarchical Kernel Machines. (2015). CBMM Memo 035_rev5.pdf (975.65 KB)
Discriminative Template Learning in Group-Convolutional Networks for Invariant Speech Representations. INTERSPEECH-2015 (International Speech Communication Association (ISCA), 2015). at <http://www.isca-speech.org/archive/interspeech_2015/i15_3229.html>
Holographic Embeddings of Knowledge Graphs. (2015). holographic-embeddings.pdf (677.87 KB)
How Important is Weight Symmetry in Backpropagation?. (2015). 1510.05067v3.pdf (615.32 KB)
On Invariance and Selectivity in Representation Learning. (2015). CBMM Memo No. 029 (812.07 KB)
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. (2015). modularity_dataset_ver1.tar.gz (36.14 MB)
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. PLOS Computational Biology 11, e1004390 (2015). journal.pcbi_.1004390.pdf (2.04 MB)
Invariant representations for action recognition in the visual system. Vision Sciences Society 15, (2015).
Invariant representations for action recognition in the visual system. Computational and Systems Neuroscience (2015).
I-theory on depth vs width: hierarchical function composition. (2015). cbmm_memo_041.pdf (1.18 MB)
Learning with a Wasserstein Loss. Advances in Neural Information Processing Systems (NIPS 2015) 28 (2015). at <http://arxiv.org/abs/1506.05439> Learning with a Wasserstein Loss_1506.05439v2.pdf (2.57 MB)
Learning with Group Invariant Features: A Kernel Perspective. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5798-learning-with-group-invariant-features-a-kernel-perspective> LearningInvarianceKernel_NIPS2015.pdf (292.18 KB)
Notes on Hierarchical Splines, DCLNs and i-theory. (2015). CBMM Memo 037 (1.83 MB)
A Science of Intelligence . (2015). A Science of Intelligence.pdf (659.5 KB)
Unsupervised learning of invariant representations. Theoretical Computer Science (2015). doi:10.1016/j.tcs.2015.06.048
What if.. (2015). What if.pdf (2.09 MB)
Can a biologically-plausible hierarchy effectively replace face detection, alignment, and recognition pipelines?. (2014). CBMM-Memo-003.pdf (963.66 KB)
Computational role of eccentricity dependent cortical magnification. (2014). CBMM-Memo-017.pdf (1.04 MB)
A Deep Representation for Invariance And Music Classification. (2014). CBMM-Memo-002.pdf (1.63 MB)