Publication

Found 904 results
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Canas, G. D., Poggio, T. & Rosasco, L. Learning manifolds with k-means and k-flats. Advances in Neural Information Processing Systems 25 (NIPS 2012) (2012). at <https://papers.nips.cc/paper/2012/hash/b20bb95ab626d93fd976af958fbc61ba-Abstract.html>
Cano-Córdoba, F., Sarma, S. & Subirana, B. Theory of Intelligence with Forgetting: Mathematical Theorems Explaining Human Universal Forgetting using “Forgetting Neural Networks”. (2017).PDF icon CBMM-Memo-071.pdf (2.54 MB)
Casper, S. et al. Frivolous Units: Wider Networks Are Not Really That Wide. AAAI 2021 (2021). at <https://dblp.org/rec/conf/aaai/CasperBDGSVK21.html>PDF icon 1912.04783.pdf (6.69 MB)
Casper, S., Nadeau, M., Hadfield-Menell, D. & Kreiman, G. Robust Feature-Level Adversaries are Interpretability Tools. NeurIPS (2022). at <https://openreview.net/forum?id=lQ--doSB2o>PDF icon 8789_robust_feature_level_adversari.pdf (3.79 MB)
Casper, S., Nadeau, M. & Kreiman, G. One thing to fool them all: generating interpretable, universal, and physically-realizable adversarial features. arXiv (2022). doi:10.48550/arXiv.2110.03605PDF icon 2110.03605.pdf (6.7 MB)
Ceola, F., Rosasco, L., Natale, L. & Ceola, F. RESPRECT: Speeding-up Multi-Fingered Grasping With Residual Reinforcement LearningRESPRECT: Speeding-Up Multi-Fingered Grasping With Residual Reinforcement Learning_supp1-3363532.mp4. IEEE Robotics and Automation Letters 9, 3045 - 3052 (2024).
Chandrasekhar, V. et al. Compression of Deep Neural Networks for Image Instance Retrieval. (2017). at <https://arxiv.org/abs/1701.04923>PDF icon 1701.04923.pdf (614.33 KB)
Chen, X. & Yuille, A. Parsing Occluded People by Flexible Compositions. Computer Vision and Pattern Recognition (CVPR) (2015).PDF icon CBMM Memo 034.pdf (5.54 MB)
Chen, Z. Sage & Wilson, M. A. How our understanding of memory replay evolves. Journal of Neurophysiology 129, 552 - 580 (2023).
Chen, F., Roig, G., Isik, L., Boix, X. & Poggio, T. Eccentricity Dependent Deep Neural Networks: Modeling Invariance in Human Vision. AAAI Spring Symposium Series, Science of Intelligence (2017). at <https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15360>PDF icon paper.pdf (963.87 KB)
Chen, Z., Grosmark, A. D., Penagos, H. & Wilson, M. A. Uncovering representations of sleep-associated hippocampal ensemble spike activity. Scientific Reports 6, (2016).
Chen, Z. & Wilson, M. A. Deciphering neural codes of memory during sleep. Trends in Neurosciences (2017).PDF icon proof (2.98 MB)
Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347 , 543-548 (2015).
Chen, X. et al. Detect What You Can: Detecting and Representing Objects using Holistic Models and Body Parts. (2014).PDF icon CBMM-Memo-015.pdf (974.07 KB)
Chen, Z., Linderman, S. W. & Wilson, M. A. Bayesian nonparametric methods for discovering latent structures of rat hippocampal ensemble spikes. IEEE Workshop on Machine Learning for Signal Processing (2016).PDF icon MLSP16 (1).pdf (1.04 MB)
Cheney, N., Schrimpf, M. & Kreiman, G. On the Robustness of Convolutional Neural Networks to Internal Architecture and Weight Perturbations. (2017).PDF icon CBMM-Memo-065.pdf (687.76 KB)
Cheng, E., Kuo, Y. - L., Cases, I., Katz, B. & Barbu, A. Spontaneous sign emergence in humans and machines through an embodied communication game. JCoLE Workshop (2022).
Cheng, E. et al. Quantifying the Emergence of Symbolic Communication. CogSci (2022). at <https://escholarship.org/uc/item/08n3293v>
Chu, J., Gauthier, J., Levy, R., Tenenbaum, J. B. & Schulz, L. Query-guided visual search . 41st Annual conference of the Cognitive Science Society (2019).
Cohen, M. A. et al. Representational similarity precedes category selectivity in the developing ventral visual pathway. NeuroImage 197, 565 - 574 (2019).
Cohen, M. A., Ostrand, C., Frontero, N. & Pham, P. - N. Characterizing a snapshot of perceptual experience. Journal of Experimental Psychology: General (2021). doi:10.1037/xge0000864
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
Conway, B. R., Lafer-Sousa, R. & Hermann, K. Mechanisms of color perception and cognition covered by# thedress. VSS 2016 16, 746-746 (2016).
Conway, B. R., Lafer-Sousa, R. & Hermann, K. Mechanisms of color perception and cognition covered by #thedress. VSS 2016 16, 746 (2016).
Conwell, C. et al. Large-scale benchmarking of deep neural network models in mouse visual cortex reveals patterns similar to those observed in macaque visual cortex. Cosyne (2021).

Pages