Publication

Found 910 results
Author Title [ Type(Desc)] Year
CBMM Memos
Dehaene-Lambertz, G. & Spelke, E. S. The infancy of the human brain. (2016). doi:http://dx.doi.org/10.1016/j.neuron.2015.09.026PDF icon CBMM-Memo-053.pdf (1.51 MB)
Anselmi, F., Rosasco, L. & Poggio, T. On Invariance and Selectivity in Representation Learning. (2015).PDF icon CBMM Memo No. 029 (812.07 KB)
Leibo, J. Z., Liao, Q., Anselmi, F. & Poggio, T. The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. (2014). doi:10.1101/004473PDF icon CBMM Memo 004_new.pdf (2.25 MB)
Poggio, T., Anselmi, F. & Rosasco, L. I-theory on depth vs width: hierarchical function composition. (2015).PDF icon cbmm_memo_041.pdf (1.18 MB)
Xu, M. et al. The Janus effects of SGD vs GD: high noise and low rank. (2023).PDF icon Updated with appendix showing empirically that the main results extend to deep nonlinear networks (2.95 MB)PDF icon Small updates...typos... (616.82 KB)
Wang, C., Ross, C., Kuo, Y. - L., Katz, B. & Barbu, A. Learning a natural-language to LTL executable semantic parser for grounded robotics. (2020). doi:https://doi.org/10.48550/arXiv.2008.03277PDF icon CBMM-Memo-122.pdf (1.03 MB)
Evangelopoulos, G., Voinea, S., Zhang, C., Rosasco, L. & Poggio, T. Learning An Invariant Speech Representation. (2014).PDF icon CBMM-Memo-022-1406.3884v1.pdf (1.81 MB)
Mhaskar, H., Liao, Q. & Poggio, T. Learning Functions: When Is Deep Better Than Shallow. (2016). at <https://arxiv.org/pdf/1603.00988v4.pdf>
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Auditory Codes from Natural Sound Statistics. (2017).PDF icon MlynarskiMcDermott_Memo060.pdf (7.11 MB)
Poggio, T. & Cooper, Y. Loss landscape: SGD has a better view. (2020).PDF icon CBMM-Memo-107.pdf (1.03 MB)PDF icon Typos and small edits, ver11 (955.08 KB)PDF icon Small edits, corrected Hessian for spurious case (337.19 KB)
Harari, D., Gao, T., Kanwisher, N., Tenenbaum, J. B. & Ullman, S. Measuring and modeling the perception of natural and unconstrained gaze in humans and machines. (2016).PDF icon CBMM-Memo-059.pdf (1.71 MB)
Ross, C., Barbu, A. & Katz, B. Measuring Social Biases in Grounded Vision and Language Embeddings. (2021).PDF icon CBMM-Memo-126.pdf (1.32 MB)
Dubach, R., Abdallah, M. S. & Poggio, T. Multiplicative Regularization Generalizes Better Than Additive Regularization. (2025).PDF icon CBMM Memo 158.pdf (4.8 MB)
Shen, W., Wang, B., Jiang, Y., Wang, Y. & Yuille, A. Multi-stage Multi-recursive-input Fully Convolutional Networks for Neuronal Boundary Detection. (2017).PDF icon CBMM-Memo-080.pdf (2.51 MB)
Zhang, C. et al. Musings on Deep Learning: Properties of SGD. (2017).PDF icon CBMM Memo 067 v2 (revised 7/19/2017) (5.88 MB)PDF icon CBMM Memo 067 v3 (revised 9/15/2017) (5.89 MB)PDF icon CBMM Memo 067 v4 (revised 12/26/2017) (5.57 MB)
Conwell, C. et al. Neural Regression, Representational Similarity, Model Zoology Neural Taskonomy at Scale in Rodent Visual Cortex. (2021).PDF icon CBMM-Memo-131.pdf (9.37 MB)
Tan, C. & Poggio, T. Neural tuning size is a key factor underlying holistic face processing. (2014).PDF icon CBMM-Memo-021-1406.3793.pdf (387.79 KB)
Linderman, S. W., Johnson, M. J., Wilson, M. A. & Chen, Z. A Nonparametric Bayesian Approach to Uncovering Rat Hippocampal Population Codes During Spatial Navigation. (2014).PDF icon CBMM-Memo-027.pdf (9.44 MB)
Miconi, T., Groomes, L. & Kreiman, G. A normalization model of visual search predicts single trial human fixations in an object search task. (2014).PDF icon CBMM-Memo-008.pdf (854.51 KB)
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-Based Generalization Bounds for Compositionally Sparse Neural Networks. (2023).PDF icon Norm-based bounds for convnets.pdf (1.2 MB)
Poggio, T., Rosasco, L., Shashua, A., Cohen, N. & Anselmi, F. Notes on Hierarchical Splines, DCLNs and i-theory. (2015).PDF icon CBMM Memo 037 (1.83 MB)
Liao, Q. & Poggio, T. Object-Oriented Deep Learning. (2017).PDF icon CBMM-Memo-070.pdf (963.54 KB)
Chen, X. & Yuille, A. Parsing Occluded People by Flexible Compositions. Computer Vision and Pattern Recognition (CVPR) (2015).PDF icon CBMM Memo 034.pdf (5.54 MB)
Lu, W., Lian, X. & Yuille, A. Parsing Semantic Parts of Cars Using Graphical Models and Segment Appearance Consistency. (2014).PDF icon CBMM-Memo-018_opt.pdf (5.02 MB)
Myanganbayar, B. et al. Partially Occluded Hands: A challenging new dataset for single-image hand pose estimation. (2018).PDF icon CBMM-Memo-097.pdf (8.53 MB)

Pages