Publication
Export 155 results:
Filters: Author is Tomaso Poggio [Clear All Filters]
On invariance and selectivity in representation learning. Information and Inference: A Journal of the IMA iaw009 (2016). doi:10.1093/imaiai/iaw009
imaiai.iaw009.full_.pdf (267.87 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Learning Functions: When Is Deep Better Than Shallow. (2016). at <https://arxiv.org/pdf/1603.00988v4.pdf>
Nested Invariance Pooling and RBM Hashing for Image Instance Retrieval. arXiv.org (2016). at <https://arxiv.org/abs/1603.04595>
1603.04595.pdf (2.9 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Neural Tuning Size in a Model of Primate Visual Processing Accounts for Three Key Markers of Holistic Face Processing. Public Library of Science | PLoS ONE 1(3): e0150980, (2016).
journal.pone_.0150980.PDF (384.15 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
From Neuron to Cognition via Computational Neuroscience (The MIT Press, 2016). at <https://mitpress.mit.edu/neuron-cognition>
Streaming Normalization: Towards Simpler and More Biologically-plausible Normalizations for Online and Recurrent Learning. (2016).
CBMM-Memo-057.pdf (1.27 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Theory I: Why and When Can Deep Networks Avoid the Curse of Dimensionality?. (2016).
CBMM-Memo-058v1.pdf (2.42 MB)
CBMM-Memo-058v5.pdf (2.45 MB)
CBMM-Memo-058-v6.pdf (2.74 MB)
Proposition 4 has been deleted (2.75 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Turing++ Questions: A Test for the Science of (Human) Intelligence. AI Magazine 37 , 73-77 (2016).
Turing_Plus_Questions.pdf (424.91 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation. (2016).
faceMirrorSymmetry_memo_ver01.pdf (3.93 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Visual Cortex and Deep Networks: Learning Invariant Representations. 136 (The MIT Press, 2016). at <https://mitpress.mit.edu/books/visual-cortex-and-deep-networks>
Deep Convolutional Networks are Hierarchical Kernel Machines. (2015).
CBMM Memo 035_rev5.pdf (975.65 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Discriminative Template Learning in Group-Convolutional Networks for Invariant Speech Representations. INTERSPEECH-2015 (International Speech Communication Association (ISCA), 2015). at <http://www.isca-speech.org/archive/interspeech_2015/i15_3229.html>
Holographic Embeddings of Knowledge Graphs. (2015).
holographic-embeddings.pdf (677.87 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
How Important is Weight Symmetry in Backpropagation?. (2015).
1510.05067v3.pdf (615.32 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
On Invariance and Selectivity in Representation Learning. (2015).
CBMM Memo No. 029 (812.07 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. (2015).
modularity_dataset_ver1.tar.gz (36.14 MB)
![application/octet-stream Binary Data](/modules/file/icons/application-octet-stream.png)
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. PLOS Computational Biology 11, e1004390 (2015).
journal.pcbi_.1004390.pdf (2.04 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Invariant representations for action recognition in the visual system. Vision Sciences Society 15, (2015).
Invariant representations for action recognition in the visual system. Computational and Systems Neuroscience (2015).
I-theory on depth vs width: hierarchical function composition. (2015).
cbmm_memo_041.pdf (1.18 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Learning with a Wasserstein Loss. Advances in Neural Information Processing Systems (NIPS 2015) 28 (2015). at <http://arxiv.org/abs/1506.05439>
Learning with a Wasserstein Loss_1506.05439v2.pdf (2.57 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Learning with Group Invariant Features: A Kernel Perspective. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5798-learning-with-group-invariant-features-a-kernel-perspective>
LearningInvarianceKernel_NIPS2015.pdf (292.18 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Notes on Hierarchical Splines, DCLNs and i-theory. (2015).
CBMM Memo 037 (1.83 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)