Publication
Export 140 results:
Filters: Author is Tomaso Poggio [Clear All Filters]
How Important is Weight Symmetry in Backpropagation?. (2015).
1510.05067v3.pdf (615.32 KB)

On Invariance and Selectivity in Representation Learning. (2015).
CBMM Memo No. 029 (812.07 KB)

The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. (2015).
modularity_dataset_ver1.tar.gz (36.14 MB)

The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. PLOS Computational Biology 11, e1004390 (2015).
journal.pcbi_.1004390.pdf (2.04 MB)

Invariant representations for action recognition in the visual system. Computational and Systems Neuroscience (2015).
Invariant representations for action recognition in the visual system. Vision Sciences Society 15, (2015).
I-theory on depth vs width: hierarchical function composition. (2015).
cbmm_memo_041.pdf (1.18 MB)

Learning with a Wasserstein Loss. Advances in Neural Information Processing Systems (NIPS 2015) 28 (2015). at <http://arxiv.org/abs/1506.05439>
Learning with a Wasserstein Loss_1506.05439v2.pdf (2.57 MB)

Learning with Group Invariant Features: A Kernel Perspective. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5798-learning-with-group-invariant-features-a-kernel-perspective>
LearningInvarianceKernel_NIPS2015.pdf (292.18 KB)

Notes on Hierarchical Splines, DCLNs and i-theory. (2015).
CBMM Memo 037 (1.83 MB)

A Science of Intelligence . (2015).
A Science of Intelligence.pdf (659.5 KB)

Unsupervised learning of invariant representations. Theoretical Computer Science (2015). doi:10.1016/j.tcs.2015.06.048
What if.. (2015).
What if.pdf (2.09 MB)

Can a biologically-plausible hierarchy effectively replace face detection, alignment, and recognition pipelines?. (2014).
CBMM-Memo-003.pdf (963.66 KB)

Computational role of eccentricity dependent cortical magnification. (2014).
CBMM-Memo-017.pdf (1.04 MB)

A Deep Representation for Invariance And Music Classification. (2014).
CBMM-Memo-002.pdf (1.63 MB)

A Deep Representation for Invariance and Music Classification. ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2014). doi:10.1109/ICASSP.2014.6854954
The dynamics of invariant object recognition in the human visual system. (2014). doi:http://dx.doi.org/10.7910/DVN/KRUPXZ
The dynamics of invariant object recognition in the human visual system. J Neurophysiol 111, 91-102 (2014).
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. (2014). doi:10.1101/004473
CBMM Memo 004_new.pdf (2.25 MB)

Learning An Invariant Speech Representation. (2014).
CBMM-Memo-022-1406.3884v1.pdf (1.81 MB)

Learning invariant representations and applications to face verification. NIPS 2013 (Advances in Neural Information Processing Systems 26, 2014). at <http://nips.cc/Conferences/2013/Program/event.php?ID=4074>
Liao_Leibo_Poggio_NIPS_2013.pdf (687.06 KB)

Neural tuning size is a key factor underlying holistic face processing. (2014).
CBMM-Memo-021-1406.3793.pdf (387.79 KB)

Phone Classification by a Hierarchy of Invariant Representation Layers. INTERSPEECH 2014 - 15th Annual Conf. of the International Speech Communication Association (International Speech Communication Association (ISCA), 2014). at <http://www.isca-speech.org/archive/interspeech_2014/i14_2346.html>